L(s) = 1 | − 2·3-s + 2·7-s + 3·9-s − 2·11-s − 2·13-s + 2·17-s − 4·19-s − 4·21-s + 4·23-s − 4·27-s − 6·29-s + 6·31-s + 4·33-s − 4·37-s + 4·39-s − 4·43-s + 10·47-s − 9·49-s − 4·51-s − 6·53-s + 8·57-s − 10·59-s + 2·61-s + 6·63-s + 10·67-s − 8·69-s − 4·71-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 0.755·7-s + 9-s − 0.603·11-s − 0.554·13-s + 0.485·17-s − 0.917·19-s − 0.872·21-s + 0.834·23-s − 0.769·27-s − 1.11·29-s + 1.07·31-s + 0.696·33-s − 0.657·37-s + 0.640·39-s − 0.609·43-s + 1.45·47-s − 9/7·49-s − 0.560·51-s − 0.824·53-s + 1.05·57-s − 1.30·59-s + 0.256·61-s + 0.755·63-s + 1.22·67-s − 0.963·69-s − 0.474·71-s + ⋯ |
Λ(s)=(=(60840000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(60840000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
60840000
= 26⋅32⋅54⋅132
|
Sign: |
1
|
Analytic conductor: |
3879.21 |
Root analytic conductor: |
7.89197 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 60840000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1+T)2 |
| 5 | | 1 |
| 13 | C1 | (1+T)2 |
good | 7 | D4 | 1−2T+13T2−2pT3+p2T4 |
| 11 | D4 | 1+2T+21T2+2pT3+p2T4 |
| 17 | D4 | 1−2T+27T2−2pT3+p2T4 |
| 19 | C2 | (1+2T+pT2)2 |
| 23 | C4 | 1−4T+42T2−4pT3+p2T4 |
| 29 | D4 | 1+6T+35T2+6pT3+p2T4 |
| 31 | D4 | 1−6T+69T2−6pT3+p2T4 |
| 37 | D4 | 1+4T+46T2+4pT3+p2T4 |
| 41 | C22 | 1+50T2+p2T4 |
| 43 | D4 | 1+4T+18T2+4pT3+p2T4 |
| 47 | D4 | 1−10T+69T2−10pT3+p2T4 |
| 53 | D4 | 1+6T+107T2+6pT3+p2T4 |
| 59 | D4 | 1+10T+141T2+10pT3+p2T4 |
| 61 | D4 | 1−2T+115T2−2pT3+p2T4 |
| 67 | D4 | 1−10T+141T2−10pT3+p2T4 |
| 71 | D4 | 1+4T+114T2+4pT3+p2T4 |
| 73 | D4 | 1+4T+22T2+4pT3+p2T4 |
| 79 | D4 | 1+12T+186T2+12pT3+p2T4 |
| 83 | D4 | 1−2T+5T2−2pT3+p2T4 |
| 89 | C2 | (1+pT2)2 |
| 97 | C4 | 1+4T−90T2+4pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.65505552484139893910982204867, −7.34546056978665090010019695468, −6.86364996755545557494333988767, −6.76148596586763014391602417703, −6.10534376852989647463977389456, −6.08531503458998691003173646863, −5.42986288125131486958830049550, −5.29349847439803882073004442338, −4.86700783069264527152267584865, −4.72456304988199802748126408139, −4.09941838692569730906743495863, −4.00923235246730581677128086819, −3.19958270232897897499669005635, −2.99848048223864324548280557079, −2.31899830698031171876791112009, −2.00770662598978189488872407011, −1.32737307812327504819314845613, −1.11390845387100822871916869345, 0, 0,
1.11390845387100822871916869345, 1.32737307812327504819314845613, 2.00770662598978189488872407011, 2.31899830698031171876791112009, 2.99848048223864324548280557079, 3.19958270232897897499669005635, 4.00923235246730581677128086819, 4.09941838692569730906743495863, 4.72456304988199802748126408139, 4.86700783069264527152267584865, 5.29349847439803882073004442338, 5.42986288125131486958830049550, 6.08531503458998691003173646863, 6.10534376852989647463977389456, 6.76148596586763014391602417703, 6.86364996755545557494333988767, 7.34546056978665090010019695468, 7.65505552484139893910982204867