L(s) = 1 | − 2·3-s + 2·7-s + 3·9-s − 2·11-s − 2·13-s + 2·17-s − 4·19-s − 4·21-s + 4·23-s − 4·27-s − 6·29-s + 6·31-s + 4·33-s − 4·37-s + 4·39-s − 4·43-s + 10·47-s − 9·49-s − 4·51-s − 6·53-s + 8·57-s − 10·59-s + 2·61-s + 6·63-s + 10·67-s − 8·69-s − 4·71-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 0.755·7-s + 9-s − 0.603·11-s − 0.554·13-s + 0.485·17-s − 0.917·19-s − 0.872·21-s + 0.834·23-s − 0.769·27-s − 1.11·29-s + 1.07·31-s + 0.696·33-s − 0.657·37-s + 0.640·39-s − 0.609·43-s + 1.45·47-s − 9/7·49-s − 0.560·51-s − 0.824·53-s + 1.05·57-s − 1.30·59-s + 0.256·61-s + 0.755·63-s + 1.22·67-s − 0.963·69-s − 0.474·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 60840000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60840000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | $C_1$ | \( ( 1 + T )^{2} \) |
| 5 | | \( 1 \) |
| 13 | $C_1$ | \( ( 1 + T )^{2} \) |
good | 7 | $D_{4}$ | \( 1 - 2 T + 13 T^{2} - 2 p T^{3} + p^{2} T^{4} \) |
| 11 | $D_{4}$ | \( 1 + 2 T + 21 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 17 | $D_{4}$ | \( 1 - 2 T + 27 T^{2} - 2 p T^{3} + p^{2} T^{4} \) |
| 19 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 23 | $C_4$ | \( 1 - 4 T + 42 T^{2} - 4 p T^{3} + p^{2} T^{4} \) |
| 29 | $D_{4}$ | \( 1 + 6 T + 35 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 31 | $D_{4}$ | \( 1 - 6 T + 69 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 37 | $D_{4}$ | \( 1 + 4 T + 46 T^{2} + 4 p T^{3} + p^{2} T^{4} \) |
| 41 | $C_2^2$ | \( 1 + 50 T^{2} + p^{2} T^{4} \) |
| 43 | $D_{4}$ | \( 1 + 4 T + 18 T^{2} + 4 p T^{3} + p^{2} T^{4} \) |
| 47 | $D_{4}$ | \( 1 - 10 T + 69 T^{2} - 10 p T^{3} + p^{2} T^{4} \) |
| 53 | $D_{4}$ | \( 1 + 6 T + 107 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 59 | $D_{4}$ | \( 1 + 10 T + 141 T^{2} + 10 p T^{3} + p^{2} T^{4} \) |
| 61 | $D_{4}$ | \( 1 - 2 T + 115 T^{2} - 2 p T^{3} + p^{2} T^{4} \) |
| 67 | $D_{4}$ | \( 1 - 10 T + 141 T^{2} - 10 p T^{3} + p^{2} T^{4} \) |
| 71 | $D_{4}$ | \( 1 + 4 T + 114 T^{2} + 4 p T^{3} + p^{2} T^{4} \) |
| 73 | $D_{4}$ | \( 1 + 4 T + 22 T^{2} + 4 p T^{3} + p^{2} T^{4} \) |
| 79 | $D_{4}$ | \( 1 + 12 T + 186 T^{2} + 12 p T^{3} + p^{2} T^{4} \) |
| 83 | $D_{4}$ | \( 1 - 2 T + 5 T^{2} - 2 p T^{3} + p^{2} T^{4} \) |
| 89 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 97 | $C_4$ | \( 1 + 4 T - 90 T^{2} + 4 p T^{3} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.65505552484139893910982204867, −7.34546056978665090010019695468, −6.86364996755545557494333988767, −6.76148596586763014391602417703, −6.10534376852989647463977389456, −6.08531503458998691003173646863, −5.42986288125131486958830049550, −5.29349847439803882073004442338, −4.86700783069264527152267584865, −4.72456304988199802748126408139, −4.09941838692569730906743495863, −4.00923235246730581677128086819, −3.19958270232897897499669005635, −2.99848048223864324548280557079, −2.31899830698031171876791112009, −2.00770662598978189488872407011, −1.32737307812327504819314845613, −1.11390845387100822871916869345, 0, 0,
1.11390845387100822871916869345, 1.32737307812327504819314845613, 2.00770662598978189488872407011, 2.31899830698031171876791112009, 2.99848048223864324548280557079, 3.19958270232897897499669005635, 4.00923235246730581677128086819, 4.09941838692569730906743495863, 4.72456304988199802748126408139, 4.86700783069264527152267584865, 5.29349847439803882073004442338, 5.42986288125131486958830049550, 6.08531503458998691003173646863, 6.10534376852989647463977389456, 6.76148596586763014391602417703, 6.86364996755545557494333988767, 7.34546056978665090010019695468, 7.65505552484139893910982204867