Properties

Label 4-777e2-1.1-c0e2-0-2
Degree $4$
Conductor $603729$
Sign $1$
Analytic cond. $0.150368$
Root an. cond. $0.622714$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 2·5-s + 6-s + 2·7-s − 2·8-s − 2·10-s − 12-s − 2·14-s − 2·15-s + 2·16-s − 17-s + 2·20-s − 2·21-s − 23-s + 2·24-s + 25-s + 27-s + 2·28-s + 2·29-s + 2·30-s − 2·32-s + 34-s + 4·35-s − 37-s − 4·40-s + ⋯
L(s)  = 1  − 2-s − 3-s + 4-s + 2·5-s + 6-s + 2·7-s − 2·8-s − 2·10-s − 12-s − 2·14-s − 2·15-s + 2·16-s − 17-s + 2·20-s − 2·21-s − 23-s + 2·24-s + 25-s + 27-s + 2·28-s + 2·29-s + 2·30-s − 2·32-s + 34-s + 4·35-s − 37-s − 4·40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 603729 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 603729 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(603729\)    =    \(3^{2} \cdot 7^{2} \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(0.150368\)
Root analytic conductor: \(0.622714\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 603729,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6437457594\)
\(L(\frac12)\) \(\approx\) \(0.6437457594\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + T + T^{2} \)
7$C_1$ \( ( 1 - T )^{2} \)
37$C_2$ \( 1 + T + T^{2} \)
good2$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
5$C_2$ \( ( 1 - T + T^{2} )^{2} \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
13$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
17$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
19$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )^{2} \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
59$C_2$ \( ( 1 - T + T^{2} )^{2} \)
61$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
67$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_2$ \( ( 1 + T + T^{2} )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.41020402413973370155607879926, −10.24466712047447992575736127642, −10.24308271844872838731213624810, −9.289819941847058277306485181826, −9.187723038673504401665313091630, −8.546389109263076573488769454453, −8.344418111701164508359424415217, −7.985276601261947577574629006785, −7.06640255600404315903579374738, −6.82137228108681970668450077020, −6.17174219760518265269628121059, −6.04287569918406175931976095801, −5.37402667149076234526353148970, −5.35508054284277644058245191365, −4.63556605716742529209449460992, −3.92520549731445226877370522291, −2.78277836838499132706963186753, −2.33037037427067170914213894285, −1.88287761886260851818065718850, −1.15644882459045300467732193160, 1.15644882459045300467732193160, 1.88287761886260851818065718850, 2.33037037427067170914213894285, 2.78277836838499132706963186753, 3.92520549731445226877370522291, 4.63556605716742529209449460992, 5.35508054284277644058245191365, 5.37402667149076234526353148970, 6.04287569918406175931976095801, 6.17174219760518265269628121059, 6.82137228108681970668450077020, 7.06640255600404315903579374738, 7.985276601261947577574629006785, 8.344418111701164508359424415217, 8.546389109263076573488769454453, 9.187723038673504401665313091630, 9.289819941847058277306485181826, 10.24308271844872838731213624810, 10.24466712047447992575736127642, 10.41020402413973370155607879926

Graph of the $Z$-function along the critical line