L(s) = 1 | − 6·3-s + 8·5-s + 16·7-s + 27·9-s − 8·11-s − 72·13-s − 48·15-s − 36·17-s + 136·19-s − 96·21-s + 256·23-s + 6·25-s − 108·27-s − 152·29-s − 80·31-s + 48·33-s + 128·35-s − 136·37-s + 432·39-s − 436·41-s − 712·43-s + 216·45-s − 224·47-s − 286·49-s + 216·51-s − 344·53-s − 64·55-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 0.715·5-s + 0.863·7-s + 9-s − 0.219·11-s − 1.53·13-s − 0.826·15-s − 0.513·17-s + 1.64·19-s − 0.997·21-s + 2.32·23-s + 0.0479·25-s − 0.769·27-s − 0.973·29-s − 0.463·31-s + 0.253·33-s + 0.618·35-s − 0.604·37-s + 1.77·39-s − 1.66·41-s − 2.52·43-s + 0.715·45-s − 0.695·47-s − 0.833·49-s + 0.593·51-s − 0.891·53-s − 0.156·55-s + ⋯ |
Λ(s)=(=(589824s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(589824s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
589824
= 216⋅32
|
Sign: |
1
|
Analytic conductor: |
2053.31 |
Root analytic conductor: |
6.73152 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 589824, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
1.047818063 |
L(21) |
≈ |
1.047818063 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1+pT)2 |
good | 5 | D4 | 1−8T+58T2−8p3T3+p6T4 |
| 7 | D4 | 1−16T+542T2−16p3T3+p6T4 |
| 11 | D4 | 1+8T−650T2+8p3T3+p6T4 |
| 13 | D4 | 1+72T+4858T2+72p3T3+p6T4 |
| 17 | D4 | 1+36T+6822T2+36p3T3+p6T4 |
| 19 | D4 | 1−136T+15014T2−136p3T3+p6T4 |
| 23 | D4 | 1−256T+39886T2−256p3T3+p6T4 |
| 29 | D4 | 1+152T+37706T2+152p3T3+p6T4 |
| 31 | D4 | 1+80T+26030T2+80p3T3+p6T4 |
| 37 | D4 | 1+136T+102602T2+136p3T3+p6T4 |
| 41 | D4 | 1+436T+102166T2+436p3T3+p6T4 |
| 43 | D4 | 1+712T+282422T2+712p3T3+p6T4 |
| 47 | D4 | 1+224T+179422T2+224p3T3+p6T4 |
| 53 | D4 | 1+344T+280538T2+344p3T3+p6T4 |
| 59 | C2 | (1+324T+p3T2)2 |
| 61 | C2 | (1+324T+p3T2)2 |
| 67 | D4 | 1−456T+174278T2−456p3T3+p6T4 |
| 71 | D4 | 1−2048T+1763566T2−2048p3T3+p6T4 |
| 73 | D4 | 1−660T+407702T2−660p3T3+p6T4 |
| 79 | D4 | 1−496T+323534T2−496p3T3+p6T4 |
| 83 | D4 | 1−776T+1131046T2−776p3T3+p6T4 |
| 89 | D4 | 1−532T+1467382T2−532p3T3+p6T4 |
| 97 | D4 | 1+1220T+586694T2+1220p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.04168311112348861698382369727, −9.779448909852847382546060161511, −9.376116940647493922457025597649, −9.152022641719708945015589347488, −8.303183989998309634106053644143, −7.970385320073127502585552743213, −7.39592972643012927178675942850, −7.09610897635939671834875333761, −6.55422001671749528302404139658, −6.35944992436599034656280145784, −5.33154424284670448438037634895, −5.18184927906689454548206041247, −4.93416257826124655930273353864, −4.76127678371367661293449945380, −3.39109107281374371855001263709, −3.37133580911363636842801467903, −2.29645707107620623293386985922, −1.73238364787003067350675067632, −1.25834291926636198745532918757, −0.30873367226111079688215583878,
0.30873367226111079688215583878, 1.25834291926636198745532918757, 1.73238364787003067350675067632, 2.29645707107620623293386985922, 3.37133580911363636842801467903, 3.39109107281374371855001263709, 4.76127678371367661293449945380, 4.93416257826124655930273353864, 5.18184927906689454548206041247, 5.33154424284670448438037634895, 6.35944992436599034656280145784, 6.55422001671749528302404139658, 7.09610897635939671834875333761, 7.39592972643012927178675942850, 7.970385320073127502585552743213, 8.303183989998309634106053644143, 9.152022641719708945015589347488, 9.376116940647493922457025597649, 9.779448909852847382546060161511, 10.04168311112348861698382369727