L(s) = 1 | − 2·3-s + 3·9-s + 12·17-s − 8·19-s + 2·25-s − 4·27-s + 12·41-s − 8·43-s − 2·49-s − 24·51-s + 16·57-s + 24·59-s + 8·67-s − 4·73-s − 4·75-s + 5·81-s − 12·89-s − 4·97-s + 24·107-s − 12·113-s − 22·121-s − 24·123-s + 127-s + 16·129-s + 131-s + 137-s + 139-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 9-s + 2.91·17-s − 1.83·19-s + 2/5·25-s − 0.769·27-s + 1.87·41-s − 1.21·43-s − 2/7·49-s − 3.36·51-s + 2.11·57-s + 3.12·59-s + 0.977·67-s − 0.468·73-s − 0.461·75-s + 5/9·81-s − 1.27·89-s − 0.406·97-s + 2.32·107-s − 1.12·113-s − 2·121-s − 2.16·123-s + 0.0887·127-s + 1.40·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
Λ(s)=(=(589824s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(589824s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
589824
= 216⋅32
|
Sign: |
1
|
Analytic conductor: |
37.6076 |
Root analytic conductor: |
2.47639 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 589824, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.288920275 |
L(21) |
≈ |
1.288920275 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1+T)2 |
good | 5 | C22 | 1−2T2+p2T4 |
| 7 | C22 | 1+2T2+p2T4 |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1+pT2)2 |
| 17 | C2 | (1−6T+pT2)2 |
| 19 | C2 | (1+4T+pT2)2 |
| 23 | C22 | 1−2T2+p2T4 |
| 29 | C22 | 1+46T2+p2T4 |
| 31 | C22 | 1+50T2+p2T4 |
| 37 | C22 | 1+26T2+p2T4 |
| 41 | C2 | (1−6T+pT2)2 |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | C22 | 1+46T2+p2T4 |
| 53 | C22 | 1+94T2+p2T4 |
| 59 | C2 | (1−12T+pT2)2 |
| 61 | C22 | 1+74T2+p2T4 |
| 67 | C2 | (1−4T+pT2)2 |
| 71 | C22 | 1+94T2+p2T4 |
| 73 | C2 | (1+2T+pT2)2 |
| 79 | C22 | 1+50T2+p2T4 |
| 83 | C2 | (1+pT2)2 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C2 | (1+2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.40832323178950496516690073363, −10.24142541407562571412619631750, −9.757942827002881799281795958243, −9.567824670349199995278608367568, −8.600997925327965764229099302844, −8.546702118283194580045683006223, −7.79344604086434859189305136321, −7.60853996407630508849648715281, −6.89673040000006302638164559861, −6.63629104888727364493423594851, −6.01226049225962676935830219852, −5.67974700076737418286177162481, −5.27210138874681810345572871230, −4.82532112152912354925956242158, −4.06798219088688365647526235101, −3.79580701790612401048742900272, −3.02866888416199003373007631606, −2.28313200304748551834209679982, −1.39673240493110064978376001926, −0.68078562470568089929410367530,
0.68078562470568089929410367530, 1.39673240493110064978376001926, 2.28313200304748551834209679982, 3.02866888416199003373007631606, 3.79580701790612401048742900272, 4.06798219088688365647526235101, 4.82532112152912354925956242158, 5.27210138874681810345572871230, 5.67974700076737418286177162481, 6.01226049225962676935830219852, 6.63629104888727364493423594851, 6.89673040000006302638164559861, 7.60853996407630508849648715281, 7.79344604086434859189305136321, 8.546702118283194580045683006223, 8.600997925327965764229099302844, 9.567824670349199995278608367568, 9.757942827002881799281795958243, 10.24142541407562571412619631750, 10.40832323178950496516690073363