L(s) = 1 | − 2·3-s − 5-s + 3·9-s + 4·11-s + 2·13-s + 2·15-s − 7·19-s + 3·23-s − 25-s − 4·27-s − 3·29-s + 31-s − 8·33-s + 2·37-s − 4·39-s − 6·41-s + 5·43-s − 3·45-s + 7·47-s + 5·53-s − 4·55-s + 14·57-s + 16·59-s − 12·61-s − 2·65-s + 14·67-s − 6·69-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 0.447·5-s + 9-s + 1.20·11-s + 0.554·13-s + 0.516·15-s − 1.60·19-s + 0.625·23-s − 1/5·25-s − 0.769·27-s − 0.557·29-s + 0.179·31-s − 1.39·33-s + 0.328·37-s − 0.640·39-s − 0.937·41-s + 0.762·43-s − 0.447·45-s + 1.02·47-s + 0.686·53-s − 0.539·55-s + 1.85·57-s + 2.08·59-s − 1.53·61-s − 0.248·65-s + 1.71·67-s − 0.722·69-s + ⋯ |
Λ(s)=(=(58430736s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(58430736s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
58430736
= 24⋅32⋅74⋅132
|
Sign: |
1
|
Analytic conductor: |
3725.59 |
Root analytic conductor: |
7.81265 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 58430736, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.894418796 |
L(21) |
≈ |
1.894418796 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1+T)2 |
| 7 | | 1 |
| 13 | C1 | (1−T)2 |
good | 5 | D4 | 1+T+2T2+pT3+p2T4 |
| 11 | C2 | (1−2T+pT2)2 |
| 17 | C2 | (1+pT2)2 |
| 19 | D4 | 1+7T+42T2+7pT3+p2T4 |
| 23 | D4 | 1−3T+40T2−3pT3+p2T4 |
| 29 | D4 | 1+3T+52T2+3pT3+p2T4 |
| 31 | D4 | 1−T+54T2−pT3+p2T4 |
| 37 | D4 | 1−2T+42T2−2pT3+p2T4 |
| 41 | D4 | 1+6T+58T2+6pT3+p2T4 |
| 43 | D4 | 1−5T+18T2−5pT3+p2T4 |
| 47 | D4 | 1−7T+98T2−7pT3+p2T4 |
| 53 | D4 | 1−5T+104T2−5pT3+p2T4 |
| 59 | C2 | (1−8T+pT2)2 |
| 61 | C2 | (1+6T+pT2)2 |
| 67 | D4 | 1−14T+150T2−14pT3+p2T4 |
| 71 | D4 | 1+6T+118T2+6pT3+p2T4 |
| 73 | D4 | 1+T−60T2+pT3+p2T4 |
| 79 | D4 | 1−5T+90T2−5pT3+p2T4 |
| 83 | D4 | 1+5T+98T2+5pT3+p2T4 |
| 89 | D4 | 1−9T+190T2−9pT3+p2T4 |
| 97 | D4 | 1+29T+396T2+29pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.83422983549892817206374131692, −7.80646403650249034745819303763, −7.17339974202224055847078632513, −6.91374354999532100307991331989, −6.58621968710743022131789556477, −6.45196946005752336279303381949, −5.83439717668421762673464716387, −5.80124821209625027960061926441, −5.25697696782888812571226921188, −4.93447468015548704998185027680, −4.33948800390894330558888376112, −4.23794332031473584731802141805, −3.74456166261019688731733419535, −3.67961576420719775120124934790, −2.87873491698267737217202065508, −2.45659779218722649991064154283, −1.79461396008775756194560689391, −1.54989730858972343540937227116, −0.76092106459037558910641398196, −0.50785677616995654619015389337,
0.50785677616995654619015389337, 0.76092106459037558910641398196, 1.54989730858972343540937227116, 1.79461396008775756194560689391, 2.45659779218722649991064154283, 2.87873491698267737217202065508, 3.67961576420719775120124934790, 3.74456166261019688731733419535, 4.23794332031473584731802141805, 4.33948800390894330558888376112, 4.93447468015548704998185027680, 5.25697696782888812571226921188, 5.80124821209625027960061926441, 5.83439717668421762673464716387, 6.45196946005752336279303381949, 6.58621968710743022131789556477, 6.91374354999532100307991331989, 7.17339974202224055847078632513, 7.80646403650249034745819303763, 7.83422983549892817206374131692