Properties

Label 4-756e2-1.1-c2e2-0-2
Degree $4$
Conductor $571536$
Sign $1$
Analytic cond. $424.339$
Root an. cond. $4.53866$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 11·7-s − 44·13-s + 37·19-s − 25·25-s + 13·31-s − 26·37-s − 122·43-s + 72·49-s + 121·61-s − 122·67-s − 143·73-s + 142·79-s − 484·91-s + 334·97-s − 194·103-s − 71·109-s − 121·121-s + 127-s + 131-s + 407·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  + 11/7·7-s − 3.38·13-s + 1.94·19-s − 25-s + 0.419·31-s − 0.702·37-s − 2.83·43-s + 1.46·49-s + 1.98·61-s − 1.82·67-s − 1.95·73-s + 1.79·79-s − 5.31·91-s + 3.44·97-s − 1.88·103-s − 0.651·109-s − 121-s + 0.00787·127-s + 0.00763·131-s + 3.06·133-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(571536\)    =    \(2^{4} \cdot 3^{6} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(424.339\)
Root analytic conductor: \(4.53866\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 571536,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.743733758\)
\(L(\frac12)\) \(\approx\) \(1.743733758\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_2$ \( 1 - 11 T + p^{2} T^{2} \)
good5$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
11$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
13$C_2$ \( ( 1 + 22 T + p^{2} T^{2} )^{2} \)
17$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
19$C_2$ \( ( 1 - 26 T + p^{2} T^{2} )( 1 - 11 T + p^{2} T^{2} ) \)
23$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
29$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
31$C_2$ \( ( 1 - 59 T + p^{2} T^{2} )( 1 + 46 T + p^{2} T^{2} ) \)
37$C_2$ \( ( 1 - 47 T + p^{2} T^{2} )( 1 + 73 T + p^{2} T^{2} ) \)
41$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
43$C_2$ \( ( 1 + 61 T + p^{2} T^{2} )^{2} \)
47$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
53$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
59$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
61$C_2$ \( ( 1 - 74 T + p^{2} T^{2} )( 1 - 47 T + p^{2} T^{2} ) \)
67$C_2$ \( ( 1 + 13 T + p^{2} T^{2} )( 1 + 109 T + p^{2} T^{2} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
73$C_2$ \( ( 1 + 46 T + p^{2} T^{2} )( 1 + 97 T + p^{2} T^{2} ) \)
79$C_2$ \( ( 1 - 131 T + p^{2} T^{2} )( 1 - 11 T + p^{2} T^{2} ) \)
83$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
89$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
97$C_2$ \( ( 1 - 167 T + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.18180398838282078440602391957, −9.926258634754627123060549696431, −9.695009576894335720349513274368, −9.116348041821956451485137785688, −8.637015580607987953422656196747, −8.007935522325443373220525499277, −7.77675929563331017016381177584, −7.35554056574911177869694079634, −7.13858293028610247451920256356, −6.54983830522572604608383475915, −5.69940630553941643181161136372, −5.19138990918447882201297068147, −4.98700571114432381620092994309, −4.74309213082229478332193847537, −4.00933821217462990339506873754, −3.22112682922620523626041015282, −2.68019878585152872173924439207, −2.02133196854073560470015935113, −1.56330464382459191433941866165, −0.44599787284632263654718859506, 0.44599787284632263654718859506, 1.56330464382459191433941866165, 2.02133196854073560470015935113, 2.68019878585152872173924439207, 3.22112682922620523626041015282, 4.00933821217462990339506873754, 4.74309213082229478332193847537, 4.98700571114432381620092994309, 5.19138990918447882201297068147, 5.69940630553941643181161136372, 6.54983830522572604608383475915, 7.13858293028610247451920256356, 7.35554056574911177869694079634, 7.77675929563331017016381177584, 8.007935522325443373220525499277, 8.637015580607987953422656196747, 9.116348041821956451485137785688, 9.695009576894335720349513274368, 9.926258634754627123060549696431, 10.18180398838282078440602391957

Graph of the $Z$-function along the critical line