Properties

Label 4-72e4-1.1-c1e2-0-19
Degree $4$
Conductor $26873856$
Sign $1$
Analytic cond. $1713.50$
Root an. cond. $6.43385$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 2·13-s + 4·19-s − 7·25-s − 16·31-s + 14·37-s + 4·43-s − 2·49-s + 14·61-s − 20·67-s − 14·73-s − 4·79-s − 8·91-s + 4·97-s − 16·103-s − 22·109-s − 10·121-s + 127-s + 131-s − 16·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 1.51·7-s + 0.554·13-s + 0.917·19-s − 7/5·25-s − 2.87·31-s + 2.30·37-s + 0.609·43-s − 2/7·49-s + 1.79·61-s − 2.44·67-s − 1.63·73-s − 0.450·79-s − 0.838·91-s + 0.406·97-s − 1.57·103-s − 2.10·109-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s − 1.38·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26873856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26873856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(26873856\)    =    \(2^{12} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1713.50\)
Root analytic conductor: \(6.43385\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 26873856,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 55 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 151 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84447102285338096176878192423, −7.66118358993559354695247348624, −7.23957013552453805696358320914, −7.16782278882315566112387845247, −6.37961363568063911587678406325, −6.29576144891600320059193096657, −5.90854682240406164865750131292, −5.59372779497451839257592069713, −5.26491210477275830317910320172, −4.71294511783717167141647595679, −4.05632433172871795397603711677, −3.97855739296688548031684659358, −3.43169400473798997744102011524, −3.24319097728579792543213996668, −2.49026189652748061274839834559, −2.41902453869811375443502913937, −1.42869310504978668529535287724, −1.23245567438395537302402289373, 0, 0, 1.23245567438395537302402289373, 1.42869310504978668529535287724, 2.41902453869811375443502913937, 2.49026189652748061274839834559, 3.24319097728579792543213996668, 3.43169400473798997744102011524, 3.97855739296688548031684659358, 4.05632433172871795397603711677, 4.71294511783717167141647595679, 5.26491210477275830317910320172, 5.59372779497451839257592069713, 5.90854682240406164865750131292, 6.29576144891600320059193096657, 6.37961363568063911587678406325, 7.16782278882315566112387845247, 7.23957013552453805696358320914, 7.66118358993559354695247348624, 7.84447102285338096176878192423

Graph of the $Z$-function along the critical line