Properties

Label 4-728e2-1.1-c1e2-0-16
Degree $4$
Conductor $529984$
Sign $1$
Analytic cond. $33.7922$
Root an. cond. $2.41103$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 4·7-s + 9-s − 12·19-s + 8·21-s + 6·25-s + 2·27-s + 4·29-s − 12·31-s + 16·37-s + 20·47-s + 9·49-s + 4·53-s − 24·57-s + 8·59-s + 4·63-s + 12·75-s + 4·81-s + 12·83-s + 8·87-s − 24·93-s − 12·103-s − 8·109-s + 32·111-s + 14·113-s − 15·121-s + 127-s + ⋯
L(s)  = 1  + 1.15·3-s + 1.51·7-s + 1/3·9-s − 2.75·19-s + 1.74·21-s + 6/5·25-s + 0.384·27-s + 0.742·29-s − 2.15·31-s + 2.63·37-s + 2.91·47-s + 9/7·49-s + 0.549·53-s − 3.17·57-s + 1.04·59-s + 0.503·63-s + 1.38·75-s + 4/9·81-s + 1.31·83-s + 0.857·87-s − 2.48·93-s − 1.18·103-s − 0.766·109-s + 3.03·111-s + 1.31·113-s − 1.36·121-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 529984 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 529984 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(529984\)    =    \(2^{6} \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(33.7922\)
Root analytic conductor: \(2.41103\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 529984,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.425094978\)
\(L(\frac12)\) \(\approx\) \(3.425094978\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_2$ \( 1 - 4 T + p T^{2} \)
13$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$$\times$$C_2$ \( ( 1 - p T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 + 15 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 15 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 + 5 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 - 7 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 63 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 - 9 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
61$C_2^2$ \( 1 - 31 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 71 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 55 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 25 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 110 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 41 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.591237776065458957815717100656, −8.186396113827957594491553827864, −7.64328335999930451686515524910, −7.35293630424942421864765130650, −6.73032923751594741389024075974, −6.23262449838928905777935770488, −5.69731013514640098640396991738, −5.08723474259735470485098049520, −4.57757998992851307994405067926, −4.07277619574273699897386794950, −3.82927678109542374848938982943, −2.65023581762938548003097866108, −2.50346250579294179784168117969, −1.90392920847006658130137912002, −0.940108646971592877119260915250, 0.940108646971592877119260915250, 1.90392920847006658130137912002, 2.50346250579294179784168117969, 2.65023581762938548003097866108, 3.82927678109542374848938982943, 4.07277619574273699897386794950, 4.57757998992851307994405067926, 5.08723474259735470485098049520, 5.69731013514640098640396991738, 6.23262449838928905777935770488, 6.73032923751594741389024075974, 7.35293630424942421864765130650, 7.64328335999930451686515524910, 8.186396113827957594491553827864, 8.591237776065458957815717100656

Graph of the $Z$-function along the critical line