L(s) = 1 | + 2·3-s + 4·7-s + 9-s − 12·19-s + 8·21-s + 6·25-s + 2·27-s + 4·29-s − 12·31-s + 16·37-s + 20·47-s + 9·49-s + 4·53-s − 24·57-s + 8·59-s + 4·63-s + 12·75-s + 4·81-s + 12·83-s + 8·87-s − 24·93-s − 12·103-s − 8·109-s + 32·111-s + 14·113-s − 15·121-s + 127-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 1.51·7-s + 1/3·9-s − 2.75·19-s + 1.74·21-s + 6/5·25-s + 0.384·27-s + 0.742·29-s − 2.15·31-s + 2.63·37-s + 2.91·47-s + 9/7·49-s + 0.549·53-s − 3.17·57-s + 1.04·59-s + 0.503·63-s + 1.38·75-s + 4/9·81-s + 1.31·83-s + 0.857·87-s − 2.48·93-s − 1.18·103-s − 0.766·109-s + 3.03·111-s + 1.31·113-s − 1.36·121-s + 0.0887·127-s + ⋯ |
Λ(s)=(=(529984s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(529984s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
529984
= 26⋅72⋅132
|
Sign: |
1
|
Analytic conductor: |
33.7922 |
Root analytic conductor: |
2.41103 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 529984, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.425094978 |
L(21) |
≈ |
3.425094978 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | C2 | 1−4T+pT2 |
| 13 | C1×C1 | (1−T)(1+T) |
good | 3 | C2×C2 | (1−pT+pT2)(1+T+pT2) |
| 5 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C22 | 1+15T2+p2T4 |
| 17 | C22 | 1−18T2+p2T4 |
| 19 | C2 | (1+6T+pT2)2 |
| 23 | C22 | 1−15T2+p2T4 |
| 29 | C2×C2 | (1−10T+pT2)(1+6T+pT2) |
| 31 | C2×C2 | (1+5T+pT2)(1+7T+pT2) |
| 37 | C2×C2 | (1−9T+pT2)(1−7T+pT2) |
| 41 | C22 | 1+63T2+p2T4 |
| 43 | C22 | 1+38T2+p2T4 |
| 47 | C2×C2 | (1−11T+pT2)(1−9T+pT2) |
| 53 | C2×C2 | (1−8T+pT2)(1+4T+pT2) |
| 59 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 61 | C22 | 1−31T2+p2T4 |
| 67 | C22 | 1+71T2+p2T4 |
| 71 | C22 | 1+18T2+p2T4 |
| 73 | C22 | 1+55T2+p2T4 |
| 79 | C22 | 1+25T2+p2T4 |
| 83 | C2 | (1−6T+pT2)2 |
| 89 | C22 | 1−110T2+p2T4 |
| 97 | C22 | 1−41T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.591237776065458957815717100656, −8.186396113827957594491553827864, −7.64328335999930451686515524910, −7.35293630424942421864765130650, −6.73032923751594741389024075974, −6.23262449838928905777935770488, −5.69731013514640098640396991738, −5.08723474259735470485098049520, −4.57757998992851307994405067926, −4.07277619574273699897386794950, −3.82927678109542374848938982943, −2.65023581762938548003097866108, −2.50346250579294179784168117969, −1.90392920847006658130137912002, −0.940108646971592877119260915250,
0.940108646971592877119260915250, 1.90392920847006658130137912002, 2.50346250579294179784168117969, 2.65023581762938548003097866108, 3.82927678109542374848938982943, 4.07277619574273699897386794950, 4.57757998992851307994405067926, 5.08723474259735470485098049520, 5.69731013514640098640396991738, 6.23262449838928905777935770488, 6.73032923751594741389024075974, 7.35293630424942421864765130650, 7.64328335999930451686515524910, 8.186396113827957594491553827864, 8.591237776065458957815717100656