Properties

Label 4-720e2-1.1-c2e2-0-5
Degree $4$
Conductor $518400$
Sign $1$
Analytic cond. $384.888$
Root an. cond. $4.42928$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·5-s − 16·7-s − 8·11-s − 6·13-s + 38·17-s + 40·23-s + 11·25-s + 88·31-s + 96·35-s − 6·37-s + 140·41-s − 72·43-s + 128·49-s + 34·53-s + 48·55-s + 144·61-s + 36·65-s − 88·67-s + 176·71-s + 110·73-s + 128·77-s + 48·83-s − 228·85-s + 96·91-s − 114·97-s − 8·103-s + 136·107-s + ⋯
L(s)  = 1  − 6/5·5-s − 2.28·7-s − 0.727·11-s − 0.461·13-s + 2.23·17-s + 1.73·23-s + 0.439·25-s + 2.83·31-s + 2.74·35-s − 0.162·37-s + 3.41·41-s − 1.67·43-s + 2.61·49-s + 0.641·53-s + 0.872·55-s + 2.36·61-s + 0.553·65-s − 1.31·67-s + 2.47·71-s + 1.50·73-s + 1.66·77-s + 0.578·83-s − 2.68·85-s + 1.05·91-s − 1.17·97-s − 0.0776·103-s + 1.27·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 518400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 518400 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(518400\)    =    \(2^{8} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(384.888\)
Root analytic conductor: \(4.42928\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 518400,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.573038890\)
\(L(\frac12)\) \(\approx\) \(1.573038890\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2$ \( 1 + 6 T + p^{2} T^{2} \)
good7$C_2^2$ \( 1 + 16 T + 128 T^{2} + 16 p^{2} T^{3} + p^{4} T^{4} \)
11$C_2$ \( ( 1 + 4 T + p^{2} T^{2} )^{2} \)
13$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p^{2} T^{3} + p^{4} T^{4} \)
17$C_2^2$ \( 1 - 38 T + 722 T^{2} - 38 p^{2} T^{3} + p^{4} T^{4} \)
19$C_2^2$ \( 1 - 658 T^{2} + p^{4} T^{4} \)
23$C_2^2$ \( 1 - 40 T + 800 T^{2} - 40 p^{2} T^{3} + p^{4} T^{4} \)
29$C_2^2$ \( 1 - 238 T^{2} + p^{4} T^{4} \)
31$C_2$ \( ( 1 - 44 T + p^{2} T^{2} )^{2} \)
37$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p^{2} T^{3} + p^{4} T^{4} \)
41$C_2$ \( ( 1 - 70 T + p^{2} T^{2} )^{2} \)
43$C_2^2$ \( 1 + 72 T + 2592 T^{2} + 72 p^{2} T^{3} + p^{4} T^{4} \)
47$C_2^2$ \( 1 + p^{4} T^{4} \)
53$C_2$ \( ( 1 - 90 T + p^{2} T^{2} )( 1 + 56 T + p^{2} T^{2} ) \)
59$C_2^2$ \( 1 + 1502 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 - 72 T + p^{2} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 88 T + 3872 T^{2} + 88 p^{2} T^{3} + p^{4} T^{4} \)
71$C_2$ \( ( 1 - 88 T + p^{2} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 110 T + 6050 T^{2} - 110 p^{2} T^{3} + p^{4} T^{4} \)
79$C_2^2$ \( 1 - 12338 T^{2} + p^{4} T^{4} \)
83$C_2^2$ \( 1 - 48 T + 1152 T^{2} - 48 p^{2} T^{3} + p^{4} T^{4} \)
89$C_2^2$ \( 1 - 15166 T^{2} + p^{4} T^{4} \)
97$C_2^2$ \( 1 + 114 T + 6498 T^{2} + 114 p^{2} T^{3} + p^{4} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.25855166908221144521464115286, −9.945337734104073528965330337572, −9.658674429345818461754997684760, −9.341878529635613317592889806872, −8.636451523012043204044071442020, −8.217909497037077241467033913256, −7.66054454318612364454405280357, −7.57773312420896442957282389244, −6.75792180828812070321648921523, −6.67894433801318225971474379019, −6.03878377034099197973409687719, −5.49195499037577199538527893043, −5.02868733567091205457230949929, −4.41513989746783041795131358779, −3.62773265149013519630787397340, −3.48791375170214335022265567108, −2.70715574144558870786913655495, −2.68242743396678021555928233445, −0.78390197828119058250098183436, −0.69477196392429294835566447200, 0.69477196392429294835566447200, 0.78390197828119058250098183436, 2.68242743396678021555928233445, 2.70715574144558870786913655495, 3.48791375170214335022265567108, 3.62773265149013519630787397340, 4.41513989746783041795131358779, 5.02868733567091205457230949929, 5.49195499037577199538527893043, 6.03878377034099197973409687719, 6.67894433801318225971474379019, 6.75792180828812070321648921523, 7.57773312420896442957282389244, 7.66054454318612364454405280357, 8.217909497037077241467033913256, 8.636451523012043204044071442020, 9.341878529635613317592889806872, 9.658674429345818461754997684760, 9.945337734104073528965330337572, 10.25855166908221144521464115286

Graph of the $Z$-function along the critical line