| L(s) = 1 | + 2·2-s + 2·3-s + 3·4-s − 2·5-s + 4·6-s + 2·7-s + 4·8-s + 3·9-s − 4·10-s + 6·12-s + 4·14-s − 4·15-s + 5·16-s − 8·17-s + 6·18-s − 6·19-s − 6·20-s + 4·21-s − 8·23-s + 8·24-s − 4·25-s + 4·27-s + 6·28-s − 14·29-s − 8·30-s − 10·31-s + 6·32-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 1.15·3-s + 3/2·4-s − 0.894·5-s + 1.63·6-s + 0.755·7-s + 1.41·8-s + 9-s − 1.26·10-s + 1.73·12-s + 1.06·14-s − 1.03·15-s + 5/4·16-s − 1.94·17-s + 1.41·18-s − 1.37·19-s − 1.34·20-s + 0.872·21-s − 1.66·23-s + 1.63·24-s − 4/5·25-s + 0.769·27-s + 1.13·28-s − 2.59·29-s − 1.46·30-s − 1.79·31-s + 1.06·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 50381604 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50381604 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.72438284331441645994442277819, −7.47503987585896035305854796694, −6.92103059479008605283675970639, −6.85628965048990702360841632767, −6.33846598943127450334182278048, −6.10663717450269031402878192216, −5.33989595158785071607480605357, −5.25951208195818050852881523419, −4.90570268292575245217392590224, −4.30072528008946937512558008115, −4.02534180532585803122346388191, −3.83333684634981055495746208341, −3.54117225658809382692224821416, −3.27809710763417494918608630171, −2.28227700541208189107535460452, −2.10542428974013241310872887259, −1.93597911961949416925105840505, −1.62024100904737084568858725009, 0, 0,
1.62024100904737084568858725009, 1.93597911961949416925105840505, 2.10542428974013241310872887259, 2.28227700541208189107535460452, 3.27809710763417494918608630171, 3.54117225658809382692224821416, 3.83333684634981055495746208341, 4.02534180532585803122346388191, 4.30072528008946937512558008115, 4.90570268292575245217392590224, 5.25951208195818050852881523419, 5.33989595158785071607480605357, 6.10663717450269031402878192216, 6.33846598943127450334182278048, 6.85628965048990702360841632767, 6.92103059479008605283675970639, 7.47503987585896035305854796694, 7.72438284331441645994442277819