L(s) = 1 | − 3-s − 3·5-s − 9-s − 2·11-s − 4·13-s + 3·15-s + 6·17-s − 6·19-s − 3·23-s + 25-s − 6·29-s − 15·31-s + 2·33-s − 37-s + 4·39-s − 6·43-s + 3·45-s − 8·47-s − 14·49-s − 6·51-s + 6·55-s + 6·57-s + 13·59-s + 6·61-s + 12·65-s − 3·67-s + 3·69-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1.34·5-s − 1/3·9-s − 0.603·11-s − 1.10·13-s + 0.774·15-s + 1.45·17-s − 1.37·19-s − 0.625·23-s + 1/5·25-s − 1.11·29-s − 2.69·31-s + 0.348·33-s − 0.164·37-s + 0.640·39-s − 0.914·43-s + 0.447·45-s − 1.16·47-s − 2·49-s − 0.840·51-s + 0.809·55-s + 0.794·57-s + 1.69·59-s + 0.768·61-s + 1.48·65-s − 0.366·67-s + 0.361·69-s + ⋯ |
Λ(s)=(=(495616s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(495616s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
495616
= 212⋅112
|
Sign: |
1
|
Analytic conductor: |
31.6009 |
Root analytic conductor: |
2.37096 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 495616, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 11 | C1 | (1+T)2 |
good | 3 | D4 | 1+T+2T2+pT3+p2T4 |
| 5 | C22 | 1+3T+8T2+3pT3+p2T4 |
| 7 | C2 | (1+pT2)2 |
| 13 | C2 | (1+2T+pT2)2 |
| 17 | D4 | 1−6T+26T2−6pT3+p2T4 |
| 19 | D4 | 1+6T+30T2+6pT3+p2T4 |
| 23 | D4 | 1+3T+10T2+3pT3+p2T4 |
| 29 | D4 | 1+6T+50T2+6pT3+p2T4 |
| 31 | D4 | 1+15T+114T2+15pT3+p2T4 |
| 37 | D4 | 1+T+36T2+pT3+p2T4 |
| 41 | C22 | 1+14T2+p2T4 |
| 43 | D4 | 1+6T+78T2+6pT3+p2T4 |
| 47 | C2 | (1+4T+pT2)2 |
| 53 | C22 | 1+38T2+p2T4 |
| 59 | D4 | 1−13T+122T2−13pT3+p2T4 |
| 61 | D4 | 1−6T−22T2−6pT3+p2T4 |
| 67 | D4 | 1+3T+98T2+3pT3+p2T4 |
| 71 | D4 | 1−19T+194T2−19pT3+p2T4 |
| 73 | C2 | (1+6T+pT2)2 |
| 79 | D4 | 1+18T+222T2+18pT3+p2T4 |
| 83 | D4 | 1+2T+14T2+2pT3+p2T4 |
| 89 | D4 | 1+3T+176T2+3pT3+p2T4 |
| 97 | D4 | 1+T+156T2+pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.994066662245861355755360111118, −9.965088507638647073968732990367, −9.623515760419739714697837517073, −8.656929244624234630824060750928, −8.530945589208049100672885995963, −8.011978207178670625658766419097, −7.49674853250841138701759634638, −7.35414587092176273137964814482, −6.84666074039592107350230004766, −6.09650404237675435814866983305, −5.65703739115574662441780954724, −5.28888958868363812420471932101, −4.78554179254037215939622947776, −4.17676354055744813843210672677, −3.48678432040528483062222868330, −3.41502641256963178080103047658, −2.30906917918481945396602919838, −1.72303323645901048412833725201, 0, 0,
1.72303323645901048412833725201, 2.30906917918481945396602919838, 3.41502641256963178080103047658, 3.48678432040528483062222868330, 4.17676354055744813843210672677, 4.78554179254037215939622947776, 5.28888958868363812420471932101, 5.65703739115574662441780954724, 6.09650404237675435814866983305, 6.84666074039592107350230004766, 7.35414587092176273137964814482, 7.49674853250841138701759634638, 8.011978207178670625658766419097, 8.530945589208049100672885995963, 8.656929244624234630824060750928, 9.623515760419739714697837517073, 9.965088507638647073968732990367, 9.994066662245861355755360111118