Properties

Label 4-704e2-1.1-c1e2-0-17
Degree $4$
Conductor $495616$
Sign $1$
Analytic cond. $31.6009$
Root an. cond. $2.37096$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s − 9-s − 2·11-s − 4·13-s + 3·15-s + 6·17-s − 6·19-s − 3·23-s + 25-s − 6·29-s − 15·31-s + 2·33-s − 37-s + 4·39-s − 6·43-s + 3·45-s − 8·47-s − 14·49-s − 6·51-s + 6·55-s + 6·57-s + 13·59-s + 6·61-s + 12·65-s − 3·67-s + 3·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s − 1/3·9-s − 0.603·11-s − 1.10·13-s + 0.774·15-s + 1.45·17-s − 1.37·19-s − 0.625·23-s + 1/5·25-s − 1.11·29-s − 2.69·31-s + 0.348·33-s − 0.164·37-s + 0.640·39-s − 0.914·43-s + 0.447·45-s − 1.16·47-s − 2·49-s − 0.840·51-s + 0.809·55-s + 0.794·57-s + 1.69·59-s + 0.768·61-s + 1.48·65-s − 0.366·67-s + 0.361·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 495616 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495616 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(495616\)    =    \(2^{12} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(31.6009\)
Root analytic conductor: \(2.37096\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 495616,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
11$C_1$ \( ( 1 + T )^{2} \)
good3$D_{4}$ \( 1 + T + 2 T^{2} + p T^{3} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 3 T + 8 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$D_{4}$ \( 1 - 6 T + 26 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 6 T + 30 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 3 T + 10 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 6 T + 50 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 15 T + 114 T^{2} + 15 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + T + 36 T^{2} + p T^{3} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 6 T + 78 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 13 T + 122 T^{2} - 13 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 6 T - 22 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 3 T + 98 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 19 T + 194 T^{2} - 19 p T^{3} + p^{2} T^{4} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$D_{4}$ \( 1 + 18 T + 222 T^{2} + 18 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 2 T + 14 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 3 T + 176 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + T + 156 T^{2} + p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.994066662245861355755360111118, −9.965088507638647073968732990367, −9.623515760419739714697837517073, −8.656929244624234630824060750928, −8.530945589208049100672885995963, −8.011978207178670625658766419097, −7.49674853250841138701759634638, −7.35414587092176273137964814482, −6.84666074039592107350230004766, −6.09650404237675435814866983305, −5.65703739115574662441780954724, −5.28888958868363812420471932101, −4.78554179254037215939622947776, −4.17676354055744813843210672677, −3.48678432040528483062222868330, −3.41502641256963178080103047658, −2.30906917918481945396602919838, −1.72303323645901048412833725201, 0, 0, 1.72303323645901048412833725201, 2.30906917918481945396602919838, 3.41502641256963178080103047658, 3.48678432040528483062222868330, 4.17676354055744813843210672677, 4.78554179254037215939622947776, 5.28888958868363812420471932101, 5.65703739115574662441780954724, 6.09650404237675435814866983305, 6.84666074039592107350230004766, 7.35414587092176273137964814482, 7.49674853250841138701759634638, 8.011978207178670625658766419097, 8.530945589208049100672885995963, 8.656929244624234630824060750928, 9.623515760419739714697837517073, 9.965088507638647073968732990367, 9.994066662245861355755360111118

Graph of the $Z$-function along the critical line