L(s) = 1 | − 190·9-s + 16·11-s + 5.39e3·19-s + 6.50e3·29-s + 9.57e3·31-s + 2.67e4·41-s − 2.40e3·49-s − 6.94e4·59-s − 2.06e3·61-s + 1.25e5·71-s − 2.28e4·79-s − 2.29e4·81-s − 3.94e4·89-s − 3.04e3·99-s + 9.18e4·101-s + 2.92e5·109-s − 3.21e5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2.74e5·169-s + ⋯ |
L(s) = 1 | − 0.781·9-s + 0.0398·11-s + 3.42·19-s + 1.43·29-s + 1.78·31-s + 2.48·41-s − 1/7·49-s − 2.59·59-s − 0.0710·61-s + 2.95·71-s − 0.411·79-s − 0.388·81-s − 0.527·89-s − 0.0311·99-s + 0.895·101-s + 2.36·109-s − 1.99·121-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s + 3.69e−6·149-s + 3.56e−6·151-s + 3.23e−6·157-s + 2.94e−6·163-s + 2.77e−6·167-s + 0.739·169-s + ⋯ |
Λ(s)=(=(490000s/2ΓC(s)2L(s)Λ(6−s)
Λ(s)=(=(490000s/2ΓC(s+5/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
490000
= 24⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
12604.2 |
Root analytic conductor: |
10.5956 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 490000, ( :5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
4.786968494 |
L(21) |
≈ |
4.786968494 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
| 7 | C2 | 1+p4T2 |
good | 3 | C22 | 1+190T2+p10T4 |
| 11 | C2 | (1−8T+p5T2)2 |
| 13 | C22 | 1−274730T2+p10T4 |
| 17 | C22 | 1+2079810T2+p10T4 |
| 19 | C2 | (1−142pT+p5T2)2 |
| 23 | C22 | 1−1690350T2+p10T4 |
| 29 | C2 | (1−3254T+p5T2)2 |
| 31 | C2 | (1−4788T+p5T2)2 |
| 37 | C22 | 1−5206p2T2+p10T4 |
| 41 | C2 | (1−13350T+p5T2)2 |
| 43 | C22 | 1−293155702T2+p10T4 |
| 47 | C22 | 1−457221070T2+p10T4 |
| 53 | C22 | 1−664518886T2+p10T4 |
| 59 | C2 | (1+34702T+p5T2)2 |
| 61 | C2 | (1+1032T+p5T2)2 |
| 67 | C22 | 1−2598078550T2+p10T4 |
| 71 | C2 | (1−62720T+p5T2)2 |
| 73 | C22 | 1−3787949710T2+p10T4 |
| 79 | C2 | (1+11400T+p5T2)2 |
| 83 | C22 | 1+35444478T2+p10T4 |
| 89 | C2 | (1+19722T+p5T2)2 |
| 97 | C22 | 1−16883568670T2+p10T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.978618610704469812879841866272, −9.508189959917088312837977440987, −9.041343905110711834432064447421, −8.728276621716262929981221106362, −7.943532404469563784487236275034, −7.81210433870065799153423810838, −7.48228842517897473000182117728, −6.74447270860215779604596003012, −6.39585942779594544159095719289, −5.78185358935566345258333302199, −5.53480715811095869125605992734, −4.82973845970495368590942040896, −4.63685170583588578708517041723, −3.82848343290785251648986693058, −3.10962668352713938753962872717, −2.96721600251874651710041593643, −2.42662523741341797727763572820, −1.43653113787135412477803022112, −0.877851811783822040198685488929, −0.61082719206203122898371408343,
0.61082719206203122898371408343, 0.877851811783822040198685488929, 1.43653113787135412477803022112, 2.42662523741341797727763572820, 2.96721600251874651710041593643, 3.10962668352713938753962872717, 3.82848343290785251648986693058, 4.63685170583588578708517041723, 4.82973845970495368590942040896, 5.53480715811095869125605992734, 5.78185358935566345258333302199, 6.39585942779594544159095719289, 6.74447270860215779604596003012, 7.48228842517897473000182117728, 7.81210433870065799153423810838, 7.943532404469563784487236275034, 8.728276621716262929981221106362, 9.041343905110711834432064447421, 9.508189959917088312837977440987, 9.978618610704469812879841866272