Properties

Label 4-700e2-1.1-c3e2-0-7
Degree $4$
Conductor $490000$
Sign $1$
Analytic cond. $1705.80$
Root an. cond. $6.42661$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 29·9-s − 30·11-s + 308·19-s − 6·29-s − 656·31-s + 192·41-s − 49·49-s + 792·59-s − 1.23e3·61-s − 96·71-s − 1.31e3·79-s + 112·81-s − 2.04e3·89-s − 870·99-s − 1.11e3·101-s + 1.11e3·109-s − 1.98e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 4.22e3·169-s + ⋯
L(s)  = 1  + 1.07·9-s − 0.822·11-s + 3.71·19-s − 0.0384·29-s − 3.80·31-s + 0.731·41-s − 1/7·49-s + 1.74·59-s − 2.58·61-s − 0.160·71-s − 1.87·79-s + 0.153·81-s − 2.42·89-s − 0.883·99-s − 1.09·101-s + 0.982·109-s − 1.49·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 1.92·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 490000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490000 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(490000\)    =    \(2^{4} \cdot 5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1705.80\)
Root analytic conductor: \(6.42661\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 490000,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.343835589\)
\(L(\frac12)\) \(\approx\) \(2.343835589\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7$C_2$ \( 1 + p^{2} T^{2} \)
good3$C_2^2$ \( 1 - 29 T^{2} + p^{6} T^{4} \)
11$C_2$ \( ( 1 + 15 T + p^{3} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 25 p^{2} T^{2} + p^{6} T^{4} \)
17$C_2^2$ \( 1 - 9097 T^{2} + p^{6} T^{4} \)
19$C_2$ \( ( 1 - 154 T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 + 10262 T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 + 3 T + p^{3} T^{2} )^{2} \)
31$C_2$ \( ( 1 + 328 T + p^{3} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 36790 T^{2} + p^{6} T^{4} \)
41$C_2$ \( ( 1 - 96 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 141058 T^{2} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 205045 T^{2} + p^{6} T^{4} \)
53$C_2^2$ \( 1 - 240154 T^{2} + p^{6} T^{4} \)
59$C_2$ \( ( 1 - 396 T + p^{3} T^{2} )^{2} \)
61$C_2$ \( ( 1 + 616 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 513910 T^{2} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 48 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 674350 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 + 659 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 1053574 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 1020 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 1785745 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.24596887564137981180999711926, −9.725462543791945523201240284061, −9.534447164062911128104930676243, −9.063885017807129307522472506349, −8.702992688677304931311267145591, −7.74615508955995035055934564956, −7.62458483619559156246944325189, −7.29478386672381562205958615587, −7.06877968303343717516942919498, −6.22346483647754092085761121458, −5.55535829090111120847579173884, −5.26756518755821532965536973033, −5.12141224720612801543675349564, −4.04684454966050300423445733432, −3.87805014364890377173652343770, −3.04385476804507960785443769536, −2.78930611644903739218298439148, −1.55943915766731846150829802049, −1.47333023662625535067172145300, −0.43813688769191033024567202800, 0.43813688769191033024567202800, 1.47333023662625535067172145300, 1.55943915766731846150829802049, 2.78930611644903739218298439148, 3.04385476804507960785443769536, 3.87805014364890377173652343770, 4.04684454966050300423445733432, 5.12141224720612801543675349564, 5.26756518755821532965536973033, 5.55535829090111120847579173884, 6.22346483647754092085761121458, 7.06877968303343717516942919498, 7.29478386672381562205958615587, 7.62458483619559156246944325189, 7.74615508955995035055934564956, 8.702992688677304931311267145591, 9.063885017807129307522472506349, 9.534447164062911128104930676243, 9.725462543791945523201240284061, 10.24596887564137981180999711926

Graph of the $Z$-function along the critical line