Properties

Label 4-684e2-1.1-c1e2-0-7
Degree $4$
Conductor $467856$
Sign $1$
Analytic cond. $29.8309$
Root an. cond. $2.33704$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 6·7-s + 8-s − 6·14-s + 16-s + 2·25-s − 6·28-s − 4·29-s + 32-s + 8·41-s − 12·43-s + 17·49-s + 2·50-s + 20·53-s − 6·56-s − 4·58-s − 16·59-s + 64-s − 8·71-s + 22·73-s + 8·82-s − 12·86-s + 17·98-s + 2·100-s + 20·106-s + 16·107-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 2.26·7-s + 0.353·8-s − 1.60·14-s + 1/4·16-s + 2/5·25-s − 1.13·28-s − 0.742·29-s + 0.176·32-s + 1.24·41-s − 1.82·43-s + 17/7·49-s + 0.282·50-s + 2.74·53-s − 0.801·56-s − 0.525·58-s − 2.08·59-s + 1/8·64-s − 0.949·71-s + 2.57·73-s + 0.883·82-s − 1.29·86-s + 1.71·98-s + 1/5·100-s + 1.94·106-s + 1.54·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 467856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 467856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(467856\)    =    \(2^{4} \cdot 3^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(29.8309\)
Root analytic conductor: \(2.33704\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 467856,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.768765991\)
\(L(\frac12)\) \(\approx\) \(1.768765991\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
3 \( 1 \)
19$C_2$ \( 1 + p T^{2} \)
good5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
43$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 - 9 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 + 5 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
61$C_2$ \( ( 1 + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 75 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 - 7 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 126 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 90 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.634785421396690321233299085650, −8.033016170548982971841517444486, −7.39951749410871353220847562437, −7.11486476424775968783668661249, −6.55362099532961595941847068962, −6.31425452124810997436354918497, −5.80584807659940157336037178503, −5.38267257036589829821591587007, −4.70810817426002516539312362730, −4.10615666775996438894538229566, −3.53039413426168323522471706796, −3.22115591001299469894859390509, −2.65093922967544299455930389544, −1.91217842788625439513224721261, −0.61251502312875154700840843574, 0.61251502312875154700840843574, 1.91217842788625439513224721261, 2.65093922967544299455930389544, 3.22115591001299469894859390509, 3.53039413426168323522471706796, 4.10615666775996438894538229566, 4.70810817426002516539312362730, 5.38267257036589829821591587007, 5.80584807659940157336037178503, 6.31425452124810997436354918497, 6.55362099532961595941847068962, 7.11486476424775968783668661249, 7.39951749410871353220847562437, 8.033016170548982971841517444486, 8.634785421396690321233299085650

Graph of the $Z$-function along the critical line