Properties

Label 4-684e2-1.1-c1e2-0-2
Degree $4$
Conductor $467856$
Sign $1$
Analytic cond. $29.8309$
Root an. cond. $2.33704$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 6·7-s − 8-s + 6·14-s + 16-s + 2·25-s − 6·28-s + 4·29-s − 32-s − 8·41-s − 12·43-s + 17·49-s − 2·50-s − 20·53-s + 6·56-s − 4·58-s + 16·59-s + 64-s + 8·71-s + 22·73-s + 8·82-s + 12·86-s − 17·98-s + 2·100-s + 20·106-s − 16·107-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 2.26·7-s − 0.353·8-s + 1.60·14-s + 1/4·16-s + 2/5·25-s − 1.13·28-s + 0.742·29-s − 0.176·32-s − 1.24·41-s − 1.82·43-s + 17/7·49-s − 0.282·50-s − 2.74·53-s + 0.801·56-s − 0.525·58-s + 2.08·59-s + 1/8·64-s + 0.949·71-s + 2.57·73-s + 0.883·82-s + 1.29·86-s − 1.71·98-s + 1/5·100-s + 1.94·106-s − 1.54·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 467856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 467856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(467856\)    =    \(2^{4} \cdot 3^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(29.8309\)
Root analytic conductor: \(2.33704\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 467856,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5538772906\)
\(L(\frac12)\) \(\approx\) \(0.5538772906\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3 \( 1 \)
19$C_2$ \( 1 + p T^{2} \)
good5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 9 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 - 5 T + p T^{2} ) \)
61$C_2$ \( ( 1 + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 75 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 - 7 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 126 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 90 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.457880985479899014756103944006, −8.276581415230693607756604397446, −7.73015386086090233925026670194, −6.91964822574493532226298466197, −6.78682437386849717586583618209, −6.41201118200370857374720017569, −6.10107696557531263189876906822, −5.16777488930779092557932302788, −5.01640021464643343700684606261, −3.89908480426948392711504438086, −3.54450326690758281448216229050, −3.01804384251345169358926901809, −2.52646450231481981058882929207, −1.57264325838400092847327723551, −0.43973154708817291664431241670, 0.43973154708817291664431241670, 1.57264325838400092847327723551, 2.52646450231481981058882929207, 3.01804384251345169358926901809, 3.54450326690758281448216229050, 3.89908480426948392711504438086, 5.01640021464643343700684606261, 5.16777488930779092557932302788, 6.10107696557531263189876906822, 6.41201118200370857374720017569, 6.78682437386849717586583618209, 6.91964822574493532226298466197, 7.73015386086090233925026670194, 8.276581415230693607756604397446, 8.457880985479899014756103944006

Graph of the $Z$-function along the critical line