L(s) = 1 | − 3-s − 3·4-s + 9-s − 8·11-s + 3·12-s + 5·16-s + 4·17-s + 8·19-s + 25-s − 27-s − 4·29-s + 8·33-s − 3·36-s + 24·44-s − 5·48-s − 14·49-s − 4·51-s − 20·53-s − 8·57-s − 3·64-s + 24·67-s − 12·68-s − 75-s − 24·76-s + 81-s + 24·83-s + 4·87-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 3/2·4-s + 1/3·9-s − 2.41·11-s + 0.866·12-s + 5/4·16-s + 0.970·17-s + 1.83·19-s + 1/5·25-s − 0.192·27-s − 0.742·29-s + 1.39·33-s − 1/2·36-s + 3.61·44-s − 0.721·48-s − 2·49-s − 0.560·51-s − 2.74·53-s − 1.05·57-s − 3/8·64-s + 2.93·67-s − 1.45·68-s − 0.115·75-s − 2.75·76-s + 1/9·81-s + 2.63·83-s + 0.428·87-s + ⋯ |
Λ(s)=(=(648675s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(648675s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
648675
= 33⋅52⋅312
|
Sign: |
−1
|
Analytic conductor: |
41.3600 |
Root analytic conductor: |
2.53597 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 648675, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | 1+T |
| 5 | C1×C1 | (1−T)(1+T) |
| 31 | C2 | 1+pT2 |
good | 2 | C2 | (1−T+pT2)(1+T+pT2) |
| 7 | C2 | (1+pT2)2 |
| 11 | C2 | (1+4T+pT2)2 |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−2T+pT2)2 |
| 19 | C2 | (1−4T+pT2)2 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1+2T+pT2)2 |
| 37 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 41 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 53 | C2 | (1+10T+pT2)2 |
| 59 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 61 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 67 | C2 | (1−12T+pT2)2 |
| 71 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 73 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1−12T+pT2)2 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C2 | (1−2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.114900408024103140014243113668, −7.66488013441745380243230842523, −7.62168634080583778803253039703, −6.76366529686096520107036215669, −6.22644927255442252578289500040, −5.48779277170674803346725706409, −5.23920392624592057055772361749, −5.11085823439540905400666440111, −4.62012066537284998425540488776, −3.83645868031632569816966802271, −3.25332827792826642629963089952, −2.91451080617330683387950783522, −1.86030328865315941936552250136, −0.850059814000557593825806016483, 0,
0.850059814000557593825806016483, 1.86030328865315941936552250136, 2.91451080617330683387950783522, 3.25332827792826642629963089952, 3.83645868031632569816966802271, 4.62012066537284998425540488776, 5.11085823439540905400666440111, 5.23920392624592057055772361749, 5.48779277170674803346725706409, 6.22644927255442252578289500040, 6.76366529686096520107036215669, 7.62168634080583778803253039703, 7.66488013441745380243230842523, 8.114900408024103140014243113668