Properties

Label 4-648675-1.1-c1e2-0-2
Degree $4$
Conductor $648675$
Sign $-1$
Analytic cond. $41.3600$
Root an. cond. $2.53597$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·4-s + 9-s − 8·11-s + 3·12-s + 5·16-s + 4·17-s + 8·19-s + 25-s − 27-s − 4·29-s + 8·33-s − 3·36-s + 24·44-s − 5·48-s − 14·49-s − 4·51-s − 20·53-s − 8·57-s − 3·64-s + 24·67-s − 12·68-s − 75-s − 24·76-s + 81-s + 24·83-s + 4·87-s + ⋯
L(s)  = 1  − 0.577·3-s − 3/2·4-s + 1/3·9-s − 2.41·11-s + 0.866·12-s + 5/4·16-s + 0.970·17-s + 1.83·19-s + 1/5·25-s − 0.192·27-s − 0.742·29-s + 1.39·33-s − 1/2·36-s + 3.61·44-s − 0.721·48-s − 2·49-s − 0.560·51-s − 2.74·53-s − 1.05·57-s − 3/8·64-s + 2.93·67-s − 1.45·68-s − 0.115·75-s − 2.75·76-s + 1/9·81-s + 2.63·83-s + 0.428·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 648675 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648675 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(648675\)    =    \(3^{3} \cdot 5^{2} \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(41.3600\)
Root analytic conductor: \(2.53597\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 648675,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 + T \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
31$C_2$ \( 1 + p T^{2} \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.114900408024103140014243113668, −7.66488013441745380243230842523, −7.62168634080583778803253039703, −6.76366529686096520107036215669, −6.22644927255442252578289500040, −5.48779277170674803346725706409, −5.23920392624592057055772361749, −5.11085823439540905400666440111, −4.62012066537284998425540488776, −3.83645868031632569816966802271, −3.25332827792826642629963089952, −2.91451080617330683387950783522, −1.86030328865315941936552250136, −0.850059814000557593825806016483, 0, 0.850059814000557593825806016483, 1.86030328865315941936552250136, 2.91451080617330683387950783522, 3.25332827792826642629963089952, 3.83645868031632569816966802271, 4.62012066537284998425540488776, 5.11085823439540905400666440111, 5.23920392624592057055772361749, 5.48779277170674803346725706409, 6.22644927255442252578289500040, 6.76366529686096520107036215669, 7.62168634080583778803253039703, 7.66488013441745380243230842523, 8.114900408024103140014243113668

Graph of the $Z$-function along the critical line