Properties

Label 4-648000-1.1-c1e2-0-24
Degree $4$
Conductor $648000$
Sign $-1$
Analytic cond. $41.3170$
Root an. cond. $2.53531$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 5-s + 2·10-s − 4·13-s − 4·16-s + 2·20-s + 25-s − 8·26-s + 4·31-s − 8·32-s − 12·37-s + 4·41-s − 8·43-s − 2·49-s + 2·50-s − 8·52-s − 12·53-s + 8·62-s − 8·64-s − 4·65-s − 8·67-s + 8·71-s − 24·74-s − 20·79-s − 4·80-s + 8·82-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 0.447·5-s + 0.632·10-s − 1.10·13-s − 16-s + 0.447·20-s + 1/5·25-s − 1.56·26-s + 0.718·31-s − 1.41·32-s − 1.97·37-s + 0.624·41-s − 1.21·43-s − 2/7·49-s + 0.282·50-s − 1.10·52-s − 1.64·53-s + 1.01·62-s − 64-s − 0.496·65-s − 0.977·67-s + 0.949·71-s − 2.78·74-s − 2.25·79-s − 0.447·80-s + 0.883·82-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 648000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(648000\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{3}\)
Sign: $-1$
Analytic conductor: \(41.3170\)
Root analytic conductor: \(2.53531\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 648000,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p T^{2} \)
3 \( 1 \)
5$C_1$ \( 1 - T \)
good7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
83$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
97$C_2^2$ \( 1 - 114 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.146771691994393050815303908361, −7.42695257700080372495319051660, −7.14313300371032718353675494909, −6.64950488221575518059242119575, −6.21010969995511813410702027130, −5.79052586978721763302571297825, −5.16168482517913712450585420243, −4.98234622930131107638460542682, −4.44927217917331309617431380303, −3.94846953218209147042306601798, −3.14742450877212056592783193075, −2.96475114449965439250305675383, −2.17471667752523341729227408401, −1.55986715987930909559071534238, 0, 1.55986715987930909559071534238, 2.17471667752523341729227408401, 2.96475114449965439250305675383, 3.14742450877212056592783193075, 3.94846953218209147042306601798, 4.44927217917331309617431380303, 4.98234622930131107638460542682, 5.16168482517913712450585420243, 5.79052586978721763302571297825, 6.21010969995511813410702027130, 6.64950488221575518059242119575, 7.14313300371032718353675494909, 7.42695257700080372495319051660, 8.146771691994393050815303908361

Graph of the $Z$-function along the critical line