Properties

Label 4-648000-1.1-c1e2-0-20
Degree $4$
Conductor $648000$
Sign $-1$
Analytic cond. $41.3170$
Root an. cond. $2.53531$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 2·13-s − 2·17-s + 25-s + 4·29-s + 2·37-s − 16·41-s − 2·49-s − 18·53-s + 4·61-s − 2·65-s + 10·73-s + 2·85-s − 12·89-s − 14·97-s + 28·101-s − 12·109-s + 22·113-s − 10·121-s − 125-s + 127-s + 131-s + 137-s + 139-s − 4·145-s + 149-s + 151-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.554·13-s − 0.485·17-s + 1/5·25-s + 0.742·29-s + 0.328·37-s − 2.49·41-s − 2/7·49-s − 2.47·53-s + 0.512·61-s − 0.248·65-s + 1.17·73-s + 0.216·85-s − 1.27·89-s − 1.42·97-s + 2.78·101-s − 1.14·109-s + 2.06·113-s − 0.909·121-s − 0.0894·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.332·145-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 648000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(648000\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{3}\)
Sign: $-1$
Analytic conductor: \(41.3170\)
Root analytic conductor: \(2.53531\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 648000,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_1$ \( 1 + T \)
good7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.138138702535008216732275109050, −7.84130140456261647118993604057, −7.16612365519815919159760674332, −6.80903459029275937111683730698, −6.34495779718512174830532378297, −6.01603839414729323195236723411, −5.23211503907463651270953390821, −4.86199820676129201534527707620, −4.44415684055343815268568302002, −3.70136543603565082576265709272, −3.37478385709343679302840344549, −2.72875102374585163969860361574, −1.93565686763223844396763774548, −1.21000763333816743285504562586, 0, 1.21000763333816743285504562586, 1.93565686763223844396763774548, 2.72875102374585163969860361574, 3.37478385709343679302840344549, 3.70136543603565082576265709272, 4.44415684055343815268568302002, 4.86199820676129201534527707620, 5.23211503907463651270953390821, 6.01603839414729323195236723411, 6.34495779718512174830532378297, 6.80903459029275937111683730698, 7.16612365519815919159760674332, 7.84130140456261647118993604057, 8.138138702535008216732275109050

Graph of the $Z$-function along the critical line