Properties

Label 4-648000-1.1-c1e2-0-14
Degree $4$
Conductor $648000$
Sign $-1$
Analytic cond. $41.3170$
Root an. cond. $2.53531$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·4-s + 5-s − 2·9-s + 2·12-s + 2·13-s − 15-s + 4·16-s − 2·20-s + 25-s + 5·27-s − 2·31-s + 4·36-s − 4·37-s − 2·39-s − 15·41-s + 2·43-s − 2·45-s − 4·48-s + 5·49-s − 4·52-s + 2·60-s − 8·64-s + 2·65-s + 17·67-s − 12·71-s − 75-s + ⋯
L(s)  = 1  − 0.577·3-s − 4-s + 0.447·5-s − 2/3·9-s + 0.577·12-s + 0.554·13-s − 0.258·15-s + 16-s − 0.447·20-s + 1/5·25-s + 0.962·27-s − 0.359·31-s + 2/3·36-s − 0.657·37-s − 0.320·39-s − 2.34·41-s + 0.304·43-s − 0.298·45-s − 0.577·48-s + 5/7·49-s − 0.554·52-s + 0.258·60-s − 64-s + 0.248·65-s + 2.07·67-s − 1.42·71-s − 0.115·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 648000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(648000\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{3}\)
Sign: $-1$
Analytic conductor: \(41.3170\)
Root analytic conductor: \(2.53531\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 648000,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
3$C_2$ \( 1 + T + p T^{2} \)
5$C_1$ \( 1 - T \)
good7$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 29 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 31 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
43$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 55 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 53 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 23 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 29 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
83$C_2$$\times$$C_2$ \( ( 1 + 9 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
97$C_2^2$ \( 1 - 41 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.442612976295692083072812045929, −7.72586393772078563816270675964, −7.25594125353782219176008997932, −6.59179077875367505603847367346, −6.33539806031813324770540675955, −5.72151650607909997817089162098, −5.33427479438455035808461112683, −5.05753015659967150055924252211, −4.48683361446820090556200679677, −3.76006413532330039492022263365, −3.43380189559290797214183065627, −2.71592421994019696595250435769, −1.86527795912980428737770388057, −1.02571346765272912354389153886, 0, 1.02571346765272912354389153886, 1.86527795912980428737770388057, 2.71592421994019696595250435769, 3.43380189559290797214183065627, 3.76006413532330039492022263365, 4.48683361446820090556200679677, 5.05753015659967150055924252211, 5.33427479438455035808461112683, 5.72151650607909997817089162098, 6.33539806031813324770540675955, 6.59179077875367505603847367346, 7.25594125353782219176008997932, 7.72586393772078563816270675964, 8.442612976295692083072812045929

Graph of the $Z$-function along the critical line