L(s) = 1 | + 6·9-s − 4·17-s + 25-s − 12·41-s + 2·49-s + 12·73-s + 27·81-s + 12·89-s + 28·97-s + 36·113-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 24·153-s + 157-s + 163-s + 167-s − 22·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
L(s) = 1 | + 2·9-s − 0.970·17-s + 1/5·25-s − 1.87·41-s + 2/7·49-s + 1.40·73-s + 3·81-s + 1.27·89-s + 2.84·97-s + 3.38·113-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 1.94·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯ |
Λ(s)=(=(409600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(409600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
409600
= 214⋅52
|
Sign: |
1
|
Analytic conductor: |
26.1164 |
Root analytic conductor: |
2.26062 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 409600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.119120521 |
L(21) |
≈ |
2.119120521 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1×C1 | (1−T)(1+T) |
good | 3 | C2 | (1−pT2)2 |
| 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C22 | 1−6T2+p2T4 |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1+2T+pT2)2 |
| 19 | C22 | 1−22T2+p2T4 |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 31 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 37 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 41 | C2 | (1+6T+pT2)2 |
| 43 | C22 | 1−22T2+p2T4 |
| 47 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C22 | 1−102T2+p2T4 |
| 61 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 67 | C22 | 1−70T2+p2T4 |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−6T+pT2)2 |
| 79 | C2 | (1+pT2)2 |
| 83 | C22 | 1+90T2+p2T4 |
| 89 | C2 | (1−6T+pT2)2 |
| 97 | C2 | (1−14T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.747632885960857457554511369924, −8.135119204590986840147380543289, −7.63681743416551529797305844505, −7.22245389961459731580036601376, −6.82203881238171856760208727134, −6.46388932185968270212586100536, −5.93658508702551377717138893647, −5.11545329537655183854292146626, −4.72991726389300358426403430935, −4.39259698449799546170391543910, −3.66846502775993424438644585598, −3.30408489711525981702747105766, −2.16341080804733184851514212185, −1.83998957870676792591407425914, −0.833094286916894356940394732605,
0.833094286916894356940394732605, 1.83998957870676792591407425914, 2.16341080804733184851514212185, 3.30408489711525981702747105766, 3.66846502775993424438644585598, 4.39259698449799546170391543910, 4.72991726389300358426403430935, 5.11545329537655183854292146626, 5.93658508702551377717138893647, 6.46388932185968270212586100536, 6.82203881238171856760208727134, 7.22245389961459731580036601376, 7.63681743416551529797305844505, 8.135119204590986840147380543289, 8.747632885960857457554511369924