Properties

Label 4-640e2-1.1-c1e2-0-49
Degree $4$
Conductor $409600$
Sign $-1$
Analytic cond. $26.1164$
Root an. cond. $2.26062$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s − 2·5-s + 6·9-s − 4·13-s − 8·15-s − 25-s − 4·27-s − 20·37-s − 16·39-s − 12·41-s + 12·43-s − 12·45-s + 2·49-s + 12·53-s + 8·65-s + 20·67-s − 24·71-s − 4·75-s + 16·79-s − 37·81-s − 12·83-s − 4·89-s − 4·107-s − 80·111-s − 24·117-s − 18·121-s − 48·123-s + ⋯
L(s)  = 1  + 2.30·3-s − 0.894·5-s + 2·9-s − 1.10·13-s − 2.06·15-s − 1/5·25-s − 0.769·27-s − 3.28·37-s − 2.56·39-s − 1.87·41-s + 1.82·43-s − 1.78·45-s + 2/7·49-s + 1.64·53-s + 0.992·65-s + 2.44·67-s − 2.84·71-s − 0.461·75-s + 1.80·79-s − 4.11·81-s − 1.31·83-s − 0.423·89-s − 0.386·107-s − 7.59·111-s − 2.21·117-s − 1.63·121-s − 4.32·123-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 409600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 409600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(409600\)    =    \(2^{14} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(26.1164\)
Root analytic conductor: \(2.26062\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 409600,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.499715772662989764702573299468, −8.098681382024412731658064042949, −7.48649464154346783477619856196, −7.33738117792255002879146989083, −6.95023759239239106595773853946, −6.15302264435441050088112742528, −5.26498006511685590910060560318, −5.16542238567969836254694300670, −4.04799601522778258065319452547, −3.91058908136761919842529082491, −3.35101374838703231470604183982, −2.81830188953599087445367836313, −2.30676446591740616355718333113, −1.71401499382330216031350685870, 0, 1.71401499382330216031350685870, 2.30676446591740616355718333113, 2.81830188953599087445367836313, 3.35101374838703231470604183982, 3.91058908136761919842529082491, 4.04799601522778258065319452547, 5.16542238567969836254694300670, 5.26498006511685590910060560318, 6.15302264435441050088112742528, 6.95023759239239106595773853946, 7.33738117792255002879146989083, 7.48649464154346783477619856196, 8.098681382024412731658064042949, 8.499715772662989764702573299468

Graph of the $Z$-function along the critical line