L(s) = 1 | + 4·3-s − 2·5-s + 6·9-s − 4·13-s − 8·15-s − 25-s − 4·27-s − 20·37-s − 16·39-s − 12·41-s + 12·43-s − 12·45-s + 2·49-s + 12·53-s + 8·65-s + 20·67-s − 24·71-s − 4·75-s + 16·79-s − 37·81-s − 12·83-s − 4·89-s − 4·107-s − 80·111-s − 24·117-s − 18·121-s − 48·123-s + ⋯ |
L(s) = 1 | + 2.30·3-s − 0.894·5-s + 2·9-s − 1.10·13-s − 2.06·15-s − 1/5·25-s − 0.769·27-s − 3.28·37-s − 2.56·39-s − 1.87·41-s + 1.82·43-s − 1.78·45-s + 2/7·49-s + 1.64·53-s + 0.992·65-s + 2.44·67-s − 2.84·71-s − 0.461·75-s + 1.80·79-s − 4.11·81-s − 1.31·83-s − 0.423·89-s − 0.386·107-s − 7.59·111-s − 2.21·117-s − 1.63·121-s − 4.32·123-s + ⋯ |
Λ(s)=(=(409600s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(409600s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
409600
= 214⋅52
|
Sign: |
−1
|
Analytic conductor: |
26.1164 |
Root analytic conductor: |
2.26062 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 409600, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1+2T+pT2 |
good | 3 | C2 | (1−2T+pT2)2 |
| 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 13 | C2 | (1+2T+pT2)2 |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 19 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1+10T+pT2)2 |
| 41 | C2 | (1+6T+pT2)2 |
| 43 | C2 | (1−6T+pT2)2 |
| 47 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 61 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 67 | C2 | (1−10T+pT2)2 |
| 71 | C2 | (1+12T+pT2)2 |
| 73 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 79 | C2 | (1−8T+pT2)2 |
| 83 | C2 | (1+6T+pT2)2 |
| 89 | C2 | (1+2T+pT2)2 |
| 97 | C2 | (1−2T+pT2)(1+2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.499715772662989764702573299468, −8.098681382024412731658064042949, −7.48649464154346783477619856196, −7.33738117792255002879146989083, −6.95023759239239106595773853946, −6.15302264435441050088112742528, −5.26498006511685590910060560318, −5.16542238567969836254694300670, −4.04799601522778258065319452547, −3.91058908136761919842529082491, −3.35101374838703231470604183982, −2.81830188953599087445367836313, −2.30676446591740616355718333113, −1.71401499382330216031350685870, 0,
1.71401499382330216031350685870, 2.30676446591740616355718333113, 2.81830188953599087445367836313, 3.35101374838703231470604183982, 3.91058908136761919842529082491, 4.04799601522778258065319452547, 5.16542238567969836254694300670, 5.26498006511685590910060560318, 6.15302264435441050088112742528, 6.95023759239239106595773853946, 7.33738117792255002879146989083, 7.48649464154346783477619856196, 8.098681382024412731658064042949, 8.499715772662989764702573299468