| L(s) = 1 | − 3-s − 4-s + 4·7-s + 9-s + 12-s − 3·13-s + 16-s + 19-s − 4·21-s − 4·25-s − 27-s − 4·28-s + 31-s − 36-s + 12·37-s + 3·39-s + 43-s − 48-s + 9·49-s + 3·52-s − 57-s + 4·61-s + 4·63-s − 64-s + 67-s + 11·73-s + 4·75-s + ⋯ |
| L(s) = 1 | − 0.577·3-s − 1/2·4-s + 1.51·7-s + 1/3·9-s + 0.288·12-s − 0.832·13-s + 1/4·16-s + 0.229·19-s − 0.872·21-s − 4/5·25-s − 0.192·27-s − 0.755·28-s + 0.179·31-s − 1/6·36-s + 1.97·37-s + 0.480·39-s + 0.152·43-s − 0.144·48-s + 9/7·49-s + 0.416·52-s − 0.132·57-s + 0.512·61-s + 0.503·63-s − 1/8·64-s + 0.122·67-s + 1.28·73-s + 0.461·75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 640332 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640332 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.538270921\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.538270921\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.216096205934668118763810471928, −7.924184039458965307970266991815, −7.60330061268231049108577457540, −7.13052660499546511716575866953, −6.50498030010084657722846659176, −6.03480911341987142463494127345, −5.48007760667757149203141497643, −5.06392971988162219875088408256, −4.78863245839722340099350144101, −4.12341316941475222245974016781, −3.89454281674751665379636023548, −2.84518681226484191776073213440, −2.25566872200255148980860736710, −1.52720044618230074469814272479, −0.68641521185623661782087662897,
0.68641521185623661782087662897, 1.52720044618230074469814272479, 2.25566872200255148980860736710, 2.84518681226484191776073213440, 3.89454281674751665379636023548, 4.12341316941475222245974016781, 4.78863245839722340099350144101, 5.06392971988162219875088408256, 5.48007760667757149203141497643, 6.03480911341987142463494127345, 6.50498030010084657722846659176, 7.13052660499546511716575866953, 7.60330061268231049108577457540, 7.924184039458965307970266991815, 8.216096205934668118763810471928