Properties

Label 4-624e2-1.1-c1e2-0-20
Degree $4$
Conductor $389376$
Sign $1$
Analytic cond. $24.8269$
Root an. cond. $2.23218$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·9-s + 2·13-s + 6·25-s + 12·37-s − 10·49-s + 20·61-s − 28·73-s + 9·81-s + 20·97-s − 20·109-s − 6·117-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  − 9-s + 0.554·13-s + 6/5·25-s + 1.97·37-s − 1.42·49-s + 2.56·61-s − 3.27·73-s + 81-s + 2.03·97-s − 1.91·109-s − 0.554·117-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3/13·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 389376 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 389376 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(389376\)    =    \(2^{8} \cdot 3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(24.8269\)
Root analytic conductor: \(2.23218\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 389376,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.624686728\)
\(L(\frac12)\) \(\approx\) \(1.624686728\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T^{2} \)
13$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.683688373796292193134200727856, −8.196622274861918133837480639756, −7.905993200326771452323105466004, −7.27713404731043592296087914734, −6.77724896569408764166163605636, −6.26064685202341561068211875646, −5.93643016225762466699723255429, −5.34431561740731235987198154638, −4.88933286777764064689943008793, −4.26544794148396911059189832207, −3.71881926097417044047389251733, −2.93644284879871507582036754110, −2.69497732809296656017134883826, −1.69700716249594300102508312052, −0.72303769087193999777882316520, 0.72303769087193999777882316520, 1.69700716249594300102508312052, 2.69497732809296656017134883826, 2.93644284879871507582036754110, 3.71881926097417044047389251733, 4.26544794148396911059189832207, 4.88933286777764064689943008793, 5.34431561740731235987198154638, 5.93643016225762466699723255429, 6.26064685202341561068211875646, 6.77724896569408764166163605636, 7.27713404731043592296087914734, 7.905993200326771452323105466004, 8.196622274861918133837480639756, 8.683688373796292193134200727856

Graph of the $Z$-function along the critical line