Properties

Label 4-60e4-1.1-c2e2-0-20
Degree $4$
Conductor $12960000$
Sign $1$
Analytic cond. $9622.21$
Root an. cond. $9.90418$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 84·29-s − 36·41-s − 98·49-s − 44·61-s − 156·89-s + 396·101-s + 364·109-s + 242·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 238·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  + 2.89·29-s − 0.878·41-s − 2·49-s − 0.721·61-s − 1.75·89-s + 3.92·101-s + 3.33·109-s + 2·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 1.40·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + 0.00448·223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(12960000\)    =    \(2^{8} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(9622.21\)
Root analytic conductor: \(9.90418\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 12960000,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.995214473\)
\(L(\frac12)\) \(\approx\) \(2.995214473\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
11$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
13$C_2$ \( ( 1 - 24 T + p^{2} T^{2} )( 1 + 24 T + p^{2} T^{2} ) \)
17$C_2$ \( ( 1 - 16 T + p^{2} T^{2} )( 1 + 16 T + p^{2} T^{2} ) \)
19$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
23$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
29$C_2$ \( ( 1 - 42 T + p^{2} T^{2} )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
37$C_2$ \( ( 1 - 24 T + p^{2} T^{2} )( 1 + 24 T + p^{2} T^{2} ) \)
41$C_2$ \( ( 1 + 18 T + p^{2} T^{2} )^{2} \)
43$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
47$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
53$C_2$ \( ( 1 - 56 T + p^{2} T^{2} )( 1 + 56 T + p^{2} T^{2} ) \)
59$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
61$C_2$ \( ( 1 + 22 T + p^{2} T^{2} )^{2} \)
67$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
73$C_2$ \( ( 1 - 96 T + p^{2} T^{2} )( 1 + 96 T + p^{2} T^{2} ) \)
79$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
83$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
89$C_2$ \( ( 1 + 78 T + p^{2} T^{2} )^{2} \)
97$C_2$ \( ( 1 - 144 T + p^{2} T^{2} )( 1 + 144 T + p^{2} T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.423146071225194891445536908567, −8.329840280434429595240268912809, −7.896868988922363850144708121319, −7.43741344705362038238349644144, −7.04595657436222383984941229370, −6.75899460754924532921479462085, −6.17678763101371326451872437831, −6.16116840980861175754445882903, −5.65743154460599204297325950437, −4.88619085309983097019005788199, −4.74559464802729090551860975010, −4.65021694096081774540435020373, −3.86510646697353275612459208867, −3.43346892070780205789256485335, −3.00903053671178171695048744654, −2.71185527923394299123981032292, −1.97983280651345409395405237256, −1.61624006166066034727976135805, −0.902899393372356573996191420601, −0.44477499229467265226900397263, 0.44477499229467265226900397263, 0.902899393372356573996191420601, 1.61624006166066034727976135805, 1.97983280651345409395405237256, 2.71185527923394299123981032292, 3.00903053671178171695048744654, 3.43346892070780205789256485335, 3.86510646697353275612459208867, 4.65021694096081774540435020373, 4.74559464802729090551860975010, 4.88619085309983097019005788199, 5.65743154460599204297325950437, 6.16116840980861175754445882903, 6.17678763101371326451872437831, 6.75899460754924532921479462085, 7.04595657436222383984941229370, 7.43741344705362038238349644144, 7.896868988922363850144708121319, 8.329840280434429595240268912809, 8.423146071225194891445536908567

Graph of the $Z$-function along the critical line