L(s) = 1 | + 2-s + 3-s − 4-s + 5-s + 6-s − 3·8-s + 9-s + 10-s − 12-s + 4·13-s + 15-s − 16-s − 4·17-s + 18-s + 8·19-s − 20-s − 3·24-s + 25-s + 4·26-s + 27-s − 4·29-s + 30-s + 5·32-s − 4·34-s − 36-s + 20·37-s + 8·38-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.447·5-s + 0.408·6-s − 1.06·8-s + 1/3·9-s + 0.316·10-s − 0.288·12-s + 1.10·13-s + 0.258·15-s − 1/4·16-s − 0.970·17-s + 0.235·18-s + 1.83·19-s − 0.223·20-s − 0.612·24-s + 1/5·25-s + 0.784·26-s + 0.192·27-s − 0.742·29-s + 0.182·30-s + 0.883·32-s − 0.685·34-s − 1/6·36-s + 3.28·37-s + 1.29·38-s + ⋯ |
Λ(s)=(=(216000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(216000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
216000
= 26⋅33⋅53
|
Sign: |
1
|
Analytic conductor: |
13.7723 |
Root analytic conductor: |
1.92642 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 216000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.865230004 |
L(21) |
≈ |
2.865230004 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−T+pT2 |
| 3 | C1 | 1−T |
| 5 | C1 | 1−T |
good | 7 | C2 | (1+pT2)2 |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1−2T+pT2)2 |
| 17 | C2 | (1+2T+pT2)2 |
| 19 | C2 | (1−4T+pT2)2 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1+2T+pT2)2 |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1−10T+pT2)2 |
| 41 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 53 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 59 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 61 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 67 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 71 | C2 | (1+8T+pT2)2 |
| 73 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1+12T+pT2)2 |
| 89 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 97 | C2 | (1−2T+pT2)(1+2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.881388845996159681294188149673, −8.843956595114680827452383410006, −8.084180434635331166491599942631, −7.68003844385765985083943135134, −7.16842258862004714094187855827, −6.44491636719189125157029592476, −5.86497653842965752491328535183, −5.83817914073203780391805721828, −4.88120268416850114670329243377, −4.52160444884874669934496061646, −3.99423297820309292802284752251, −3.16799571044027062920603606790, −3.01549784140686353642765162463, −1.98364241717056996622491365555, −0.991628865642481429121344680829,
0.991628865642481429121344680829, 1.98364241717056996622491365555, 3.01549784140686353642765162463, 3.16799571044027062920603606790, 3.99423297820309292802284752251, 4.52160444884874669934496061646, 4.88120268416850114670329243377, 5.83817914073203780391805721828, 5.86497653842965752491328535183, 6.44491636719189125157029592476, 7.16842258862004714094187855827, 7.68003844385765985083943135134, 8.084180434635331166491599942631, 8.843956595114680827452383410006, 8.881388845996159681294188149673