L(s) = 1 | + 2·2-s − 3-s + 2·4-s + 5-s − 2·6-s + 9-s + 2·10-s − 2·12-s − 15-s − 4·16-s + 2·18-s + 8·19-s + 2·20-s − 4·23-s + 25-s − 27-s + 6·29-s − 2·30-s − 8·32-s + 2·36-s + 16·38-s + 45-s − 8·46-s + 20·47-s + 4·48-s − 2·49-s + 2·50-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 0.577·3-s + 4-s + 0.447·5-s − 0.816·6-s + 1/3·9-s + 0.632·10-s − 0.577·12-s − 0.258·15-s − 16-s + 0.471·18-s + 1.83·19-s + 0.447·20-s − 0.834·23-s + 1/5·25-s − 0.192·27-s + 1.11·29-s − 0.365·30-s − 1.41·32-s + 1/3·36-s + 2.59·38-s + 0.149·45-s − 1.17·46-s + 2.91·47-s + 0.577·48-s − 2/7·49-s + 0.282·50-s + ⋯ |
Λ(s)=(=(216000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(216000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
216000
= 26⋅33⋅53
|
Sign: |
1
|
Analytic conductor: |
13.7723 |
Root analytic conductor: |
1.92642 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 216000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.232269705 |
L(21) |
≈ |
3.232269705 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−pT+pT2 |
| 3 | C1 | 1+T |
| 5 | C1 | 1−T |
good | 7 | C22 | 1+2T2+p2T4 |
| 11 | C22 | 1−10T2+p2T4 |
| 13 | C22 | 1−22T2+p2T4 |
| 17 | C22 | 1+22T2+p2T4 |
| 19 | C2 | (1−4T+pT2)2 |
| 23 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 29 | C2×C2 | (1−6T+pT2)(1+pT2) |
| 31 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 37 | C22 | 1+18T2+p2T4 |
| 41 | C22 | 1+70T2+p2T4 |
| 43 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 47 | C2×C2 | (1−12T+pT2)(1−8T+pT2) |
| 53 | C2×C2 | (1−6T+pT2)(1−2T+pT2) |
| 59 | C22 | 1+6T2+p2T4 |
| 61 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 67 | C2 | (1+4T+pT2)2 |
| 71 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 73 | C2×C2 | (1−4T+pT2)(1+2T+pT2) |
| 79 | C22 | 1−82T2+p2T4 |
| 83 | C22 | 1−46T2+p2T4 |
| 89 | C22 | 1−2T2+p2T4 |
| 97 | C2 | (1+8T+pT2)(1+18T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.073530912643278889469956898388, −8.657861741242126463766634676427, −7.88654228264781158140020591353, −7.47252738528849922863843022880, −6.81868368955996367238914359276, −6.58666760429134442590423229824, −5.82490822183852211395449671228, −5.45856204156854412166855237097, −5.35311022889694298747997708124, −4.33995178638783517592705153269, −4.26296913019575463751863880198, −3.37165696296968462837210908940, −2.83061317783178071719510045796, −2.11884394608975336905441282615, −0.977335489126259654610215845871,
0.977335489126259654610215845871, 2.11884394608975336905441282615, 2.83061317783178071719510045796, 3.37165696296968462837210908940, 4.26296913019575463751863880198, 4.33995178638783517592705153269, 5.35311022889694298747997708124, 5.45856204156854412166855237097, 5.82490822183852211395449671228, 6.58666760429134442590423229824, 6.81868368955996367238914359276, 7.47252738528849922863843022880, 7.88654228264781158140020591353, 8.657861741242126463766634676427, 9.073530912643278889469956898388