L(s) = 1 | + 2-s + 3-s − 4-s + 5-s + 6-s − 3·8-s + 9-s + 10-s − 12-s + 15-s − 16-s + 18-s + 4·19-s − 20-s + 8·23-s − 3·24-s + 25-s + 27-s + 30-s + 5·32-s − 36-s + 4·38-s − 3·40-s − 20·43-s + 45-s + 8·46-s + 8·47-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.447·5-s + 0.408·6-s − 1.06·8-s + 1/3·9-s + 0.316·10-s − 0.288·12-s + 0.258·15-s − 1/4·16-s + 0.235·18-s + 0.917·19-s − 0.223·20-s + 1.66·23-s − 0.612·24-s + 1/5·25-s + 0.192·27-s + 0.182·30-s + 0.883·32-s − 1/6·36-s + 0.648·38-s − 0.474·40-s − 3.04·43-s + 0.149·45-s + 1.17·46-s + 1.16·47-s + ⋯ |
Λ(s)=(=(216000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(216000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
216000
= 26⋅33⋅53
|
Sign: |
1
|
Analytic conductor: |
13.7723 |
Root analytic conductor: |
1.92642 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 216000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.762078493 |
L(21) |
≈ |
2.762078493 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−T+pT2 |
| 3 | C1 | 1−T |
| 5 | C1 | 1−T |
good | 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C22 | 1−6T2+p2T4 |
| 13 | C22 | 1−6T2+p2T4 |
| 17 | C22 | 1+6T2+p2T4 |
| 19 | C2×C2 | (1−4T+pT2)(1+pT2) |
| 23 | C2 | (1−4T+pT2)2 |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C22 | 1+22T2+p2T4 |
| 37 | C22 | 1+34T2+p2T4 |
| 41 | C22 | 1−10T2+p2T4 |
| 43 | C2×C2 | (1+8T+pT2)(1+12T+pT2) |
| 47 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 53 | C2×C2 | (1−10T+pT2)(1+14T+pT2) |
| 59 | C22 | 1−62T2+p2T4 |
| 61 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 67 | C2×C2 | (1−4T+pT2)(1+8T+pT2) |
| 71 | C2×C2 | (1−12T+pT2)(1−8T+pT2) |
| 73 | C2×C2 | (1−10T+pT2)(1−6T+pT2) |
| 79 | C22 | 1−74T2+p2T4 |
| 83 | C22 | 1−26T2+p2T4 |
| 89 | C22 | 1−26T2+p2T4 |
| 97 | C2×C2 | (1−6T+pT2)(1+10T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.082436148341928727121121826518, −8.591346208108976873907943329677, −8.225191928409399460628428045239, −7.64953063828459655550390295412, −6.98398015254135592858985532646, −6.67648428988813377217822323982, −6.05640702866163324913475794325, −5.40296211543658029401315427475, −4.98493646668412576806366292284, −4.71016738217268327245081439923, −3.76684592157047111225216012451, −3.38441085465503245342385480290, −2.86936537122710371154524101951, −2.03884879549215296954331062818, −0.959503861242509782436814994634,
0.959503861242509782436814994634, 2.03884879549215296954331062818, 2.86936537122710371154524101951, 3.38441085465503245342385480290, 3.76684592157047111225216012451, 4.71016738217268327245081439923, 4.98493646668412576806366292284, 5.40296211543658029401315427475, 6.05640702866163324913475794325, 6.67648428988813377217822323982, 6.98398015254135592858985532646, 7.64953063828459655550390295412, 8.225191928409399460628428045239, 8.591346208108976873907943329677, 9.082436148341928727121121826518