L(s) = 1 | + 2-s + 3-s − 4-s + 5-s + 6-s − 3·8-s + 9-s + 10-s − 12-s + 15-s − 16-s + 18-s + 4·19-s − 20-s + 8·23-s − 3·24-s + 25-s + 27-s + 30-s + 5·32-s − 36-s + 4·38-s − 3·40-s − 20·43-s + 45-s + 8·46-s + 8·47-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.447·5-s + 0.408·6-s − 1.06·8-s + 1/3·9-s + 0.316·10-s − 0.288·12-s + 0.258·15-s − 1/4·16-s + 0.235·18-s + 0.917·19-s − 0.223·20-s + 1.66·23-s − 0.612·24-s + 1/5·25-s + 0.192·27-s + 0.182·30-s + 0.883·32-s − 1/6·36-s + 0.648·38-s − 0.474·40-s − 3.04·43-s + 0.149·45-s + 1.17·46-s + 1.16·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.762078493\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.762078493\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_2$ | \( 1 - T + p T^{2} \) |
| 3 | $C_1$ | \( 1 - T \) |
| 5 | $C_1$ | \( 1 - T \) |
good | 7 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 11 | $C_2^2$ | \( 1 - 6 T^{2} + p^{2} T^{4} \) |
| 13 | $C_2^2$ | \( 1 - 6 T^{2} + p^{2} T^{4} \) |
| 17 | $C_2^2$ | \( 1 + 6 T^{2} + p^{2} T^{4} \) |
| 19 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \) |
| 23 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 31 | $C_2^2$ | \( 1 + 22 T^{2} + p^{2} T^{4} \) |
| 37 | $C_2^2$ | \( 1 + 34 T^{2} + p^{2} T^{4} \) |
| 41 | $C_2^2$ | \( 1 - 10 T^{2} + p^{2} T^{4} \) |
| 43 | $C_2$$\times$$C_2$ | \( ( 1 + 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 47 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) |
| 53 | $C_2$$\times$$C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) |
| 59 | $C_2^2$ | \( 1 - 62 T^{2} + p^{2} T^{4} \) |
| 61 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 67 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 71 | $C_2$$\times$$C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 - 8 T + p T^{2} ) \) |
| 73 | $C_2$$\times$$C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 - 6 T + p T^{2} ) \) |
| 79 | $C_2^2$ | \( 1 - 74 T^{2} + p^{2} T^{4} \) |
| 83 | $C_2^2$ | \( 1 - 26 T^{2} + p^{2} T^{4} \) |
| 89 | $C_2^2$ | \( 1 - 26 T^{2} + p^{2} T^{4} \) |
| 97 | $C_2$$\times$$C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.082436148341928727121121826518, −8.591346208108976873907943329677, −8.225191928409399460628428045239, −7.64953063828459655550390295412, −6.98398015254135592858985532646, −6.67648428988813377217822323982, −6.05640702866163324913475794325, −5.40296211543658029401315427475, −4.98493646668412576806366292284, −4.71016738217268327245081439923, −3.76684592157047111225216012451, −3.38441085465503245342385480290, −2.86936537122710371154524101951, −2.03884879549215296954331062818, −0.959503861242509782436814994634,
0.959503861242509782436814994634, 2.03884879549215296954331062818, 2.86936537122710371154524101951, 3.38441085465503245342385480290, 3.76684592157047111225216012451, 4.71016738217268327245081439923, 4.98493646668412576806366292284, 5.40296211543658029401315427475, 6.05640702866163324913475794325, 6.67648428988813377217822323982, 6.98398015254135592858985532646, 7.64953063828459655550390295412, 8.225191928409399460628428045239, 8.591346208108976873907943329677, 9.082436148341928727121121826518