Properties

Label 4-60e3-1.1-c1e2-0-6
Degree $4$
Conductor $216000$
Sign $1$
Analytic cond. $13.7723$
Root an. cond. $1.92642$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 2·7-s + 9-s + 6·11-s − 15-s − 2·21-s + 25-s + 27-s + 6·33-s + 2·35-s − 8·43-s − 45-s − 2·49-s + 12·53-s − 6·55-s + 18·59-s + 4·61-s − 2·63-s + 4·67-s + 12·71-s + 75-s − 12·77-s + 81-s + 6·99-s + 10·103-s + 2·105-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.755·7-s + 1/3·9-s + 1.80·11-s − 0.258·15-s − 0.436·21-s + 1/5·25-s + 0.192·27-s + 1.04·33-s + 0.338·35-s − 1.21·43-s − 0.149·45-s − 2/7·49-s + 1.64·53-s − 0.809·55-s + 2.34·59-s + 0.512·61-s − 0.251·63-s + 0.488·67-s + 1.42·71-s + 0.115·75-s − 1.36·77-s + 1/9·81-s + 0.603·99-s + 0.985·103-s + 0.195·105-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(216000\)    =    \(2^{6} \cdot 3^{3} \cdot 5^{3}\)
Sign: $1$
Analytic conductor: \(13.7723\)
Root analytic conductor: \(1.92642\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 216000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.963907807\)
\(L(\frac12)\) \(\approx\) \(1.963907807\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 - T \)
5$C_1$ \( 1 + T \)
good7$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
13$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \)
73$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.986817345232143354160192898618, −8.624384126853811739476276912996, −8.222151557355997532915384866309, −7.63588507152931622264611878773, −6.99152317761459520818406697833, −6.66985734205751366789458017246, −6.44138367987963469752015935562, −5.57548968519602015653592828161, −5.08972778796573881835305963752, −4.21232854349724191593823438788, −3.85423103781006743254277566399, −3.48288543200374090452875304293, −2.70474550224093063124939423562, −1.89037268545330142266197998729, −0.893764133731049935751559998534, 0.893764133731049935751559998534, 1.89037268545330142266197998729, 2.70474550224093063124939423562, 3.48288543200374090452875304293, 3.85423103781006743254277566399, 4.21232854349724191593823438788, 5.08972778796573881835305963752, 5.57548968519602015653592828161, 6.44138367987963469752015935562, 6.66985734205751366789458017246, 6.99152317761459520818406697833, 7.63588507152931622264611878773, 8.222151557355997532915384866309, 8.624384126853811739476276912996, 8.986817345232143354160192898618

Graph of the $Z$-function along the critical line