L(s) = 1 | + 3-s − 5-s − 2·7-s + 9-s + 6·11-s − 15-s − 2·21-s + 25-s + 27-s + 6·33-s + 2·35-s − 8·43-s − 45-s − 2·49-s + 12·53-s − 6·55-s + 18·59-s + 4·61-s − 2·63-s + 4·67-s + 12·71-s + 75-s − 12·77-s + 81-s + 6·99-s + 10·103-s + 2·105-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.447·5-s − 0.755·7-s + 1/3·9-s + 1.80·11-s − 0.258·15-s − 0.436·21-s + 1/5·25-s + 0.192·27-s + 1.04·33-s + 0.338·35-s − 1.21·43-s − 0.149·45-s − 2/7·49-s + 1.64·53-s − 0.809·55-s + 2.34·59-s + 0.512·61-s − 0.251·63-s + 0.488·67-s + 1.42·71-s + 0.115·75-s − 1.36·77-s + 1/9·81-s + 0.603·99-s + 0.985·103-s + 0.195·105-s + ⋯ |
Λ(s)=(=(216000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(216000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
216000
= 26⋅33⋅53
|
Sign: |
1
|
Analytic conductor: |
13.7723 |
Root analytic conductor: |
1.92642 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 216000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.963907807 |
L(21) |
≈ |
1.963907807 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | 1−T |
| 5 | C1 | 1+T |
good | 7 | C2×C2 | (1−2T+pT2)(1+4T+pT2) |
| 11 | C2×C2 | (1−6T+pT2)(1+pT2) |
| 13 | C22 | 1−2T2+p2T4 |
| 17 | C2 | (1+pT2)2 |
| 19 | C22 | 1+10T2+p2T4 |
| 23 | C22 | 1−26T2+p2T4 |
| 29 | C22 | 1−50T2+p2T4 |
| 31 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 37 | C22 | 1−2T2+p2T4 |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | C22 | 1−14T2+p2T4 |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C2×C2 | (1−12T+pT2)(1−6T+pT2) |
| 61 | C2×C2 | (1−8T+pT2)(1+4T+pT2) |
| 67 | C2×C2 | (1−8T+pT2)(1+4T+pT2) |
| 71 | C2×C2 | (1−12T+pT2)(1+pT2) |
| 73 | C22 | 1−74T2+p2T4 |
| 79 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 83 | C22 | 1−86T2+p2T4 |
| 89 | C22 | 1+70T2+p2T4 |
| 97 | C2 | (1−14T+pT2)(1+14T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.986817345232143354160192898618, −8.624384126853811739476276912996, −8.222151557355997532915384866309, −7.63588507152931622264611878773, −6.99152317761459520818406697833, −6.66985734205751366789458017246, −6.44138367987963469752015935562, −5.57548968519602015653592828161, −5.08972778796573881835305963752, −4.21232854349724191593823438788, −3.85423103781006743254277566399, −3.48288543200374090452875304293, −2.70474550224093063124939423562, −1.89037268545330142266197998729, −0.893764133731049935751559998534,
0.893764133731049935751559998534, 1.89037268545330142266197998729, 2.70474550224093063124939423562, 3.48288543200374090452875304293, 3.85423103781006743254277566399, 4.21232854349724191593823438788, 5.08972778796573881835305963752, 5.57548968519602015653592828161, 6.44138367987963469752015935562, 6.66985734205751366789458017246, 6.99152317761459520818406697833, 7.63588507152931622264611878773, 8.222151557355997532915384866309, 8.624384126853811739476276912996, 8.986817345232143354160192898618