L(s) = 1 | + 2-s + 3-s − 4-s + 5-s + 6-s − 3·8-s + 9-s + 10-s − 12-s − 6·13-s + 15-s − 16-s + 18-s − 20-s − 3·24-s + 25-s − 6·26-s + 27-s + 30-s + 16·31-s + 5·32-s − 36-s + 6·37-s − 6·39-s − 3·40-s + 6·41-s + 45-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.447·5-s + 0.408·6-s − 1.06·8-s + 1/3·9-s + 0.316·10-s − 0.288·12-s − 1.66·13-s + 0.258·15-s − 1/4·16-s + 0.235·18-s − 0.223·20-s − 0.612·24-s + 1/5·25-s − 1.17·26-s + 0.192·27-s + 0.182·30-s + 2.87·31-s + 0.883·32-s − 1/6·36-s + 0.986·37-s − 0.960·39-s − 0.474·40-s + 0.937·41-s + 0.149·45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.438354577\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.438354577\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_2$ | \( 1 - T + p T^{2} \) |
| 3 | $C_1$ | \( 1 - T \) |
| 5 | $C_1$ | \( 1 - T \) |
good | 7 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 11 | $C_2^2$ | \( 1 - 6 T^{2} + p^{2} T^{4} \) |
| 13 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 17 | $C_2^2$ | \( 1 + 2 T^{2} + p^{2} T^{4} \) |
| 19 | $C_2^2$ | \( 1 - 10 T^{2} + p^{2} T^{4} \) |
| 23 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 29 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 31 | $C_2$ | \( ( 1 - 8 T + p T^{2} )^{2} \) |
| 37 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) |
| 41 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) |
| 43 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 47 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 53 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 59 | $C_2^2$ | \( 1 - 66 T^{2} + p^{2} T^{4} \) |
| 61 | $C_2^2$ | \( 1 + 50 T^{2} + p^{2} T^{4} \) |
| 67 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 71 | $C_2$$\times$$C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) |
| 73 | $C_2^2$ | \( 1 + 94 T^{2} + p^{2} T^{4} \) |
| 79 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 83 | $C_2$$\times$$C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \) |
| 89 | $C_2$$\times$$C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 97 | $C_2^2$ | \( 1 - 74 T^{2} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.136829845041719869803204909610, −8.572448663066506355962139996664, −8.091898104800528160801263424980, −7.70383442746954505009106361716, −7.12485387632655359718601026080, −6.48835408883971268939119199881, −6.13431711419477769810541152571, −5.48960454448931742334640145872, −4.90867080535439970632935053629, −4.52844504199261714499832165926, −4.12229626934867515006504594626, −3.22087665149485841437962575171, −2.68492287371980531455329544918, −2.26607927320469213703160857526, −0.864946238466998714244148432182,
0.864946238466998714244148432182, 2.26607927320469213703160857526, 2.68492287371980531455329544918, 3.22087665149485841437962575171, 4.12229626934867515006504594626, 4.52844504199261714499832165926, 4.90867080535439970632935053629, 5.48960454448931742334640145872, 6.13431711419477769810541152571, 6.48835408883971268939119199881, 7.12485387632655359718601026080, 7.70383442746954505009106361716, 8.091898104800528160801263424980, 8.572448663066506355962139996664, 9.136829845041719869803204909610