Properties

Label 4-60e3-1.1-c1e2-0-4
Degree $4$
Conductor $216000$
Sign $1$
Analytic cond. $13.7723$
Root an. cond. $1.92642$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s + 5-s + 6-s − 3·8-s + 9-s + 10-s − 12-s − 6·13-s + 15-s − 16-s + 18-s − 20-s − 3·24-s + 25-s − 6·26-s + 27-s + 30-s + 16·31-s + 5·32-s − 36-s + 6·37-s − 6·39-s − 3·40-s + 6·41-s + 45-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.447·5-s + 0.408·6-s − 1.06·8-s + 1/3·9-s + 0.316·10-s − 0.288·12-s − 1.66·13-s + 0.258·15-s − 1/4·16-s + 0.235·18-s − 0.223·20-s − 0.612·24-s + 1/5·25-s − 1.17·26-s + 0.192·27-s + 0.182·30-s + 2.87·31-s + 0.883·32-s − 1/6·36-s + 0.986·37-s − 0.960·39-s − 0.474·40-s + 0.937·41-s + 0.149·45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(216000\)    =    \(2^{6} \cdot 3^{3} \cdot 5^{3}\)
Sign: $1$
Analytic conductor: \(13.7723\)
Root analytic conductor: \(1.92642\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 216000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.438354577\)
\(L(\frac12)\) \(\approx\) \(2.438354577\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + p T^{2} \)
3$C_1$ \( 1 - T \)
5$C_1$ \( 1 - T \)
good7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 94 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
97$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.136829845041719869803204909610, −8.572448663066506355962139996664, −8.091898104800528160801263424980, −7.70383442746954505009106361716, −7.12485387632655359718601026080, −6.48835408883971268939119199881, −6.13431711419477769810541152571, −5.48960454448931742334640145872, −4.90867080535439970632935053629, −4.52844504199261714499832165926, −4.12229626934867515006504594626, −3.22087665149485841437962575171, −2.68492287371980531455329544918, −2.26607927320469213703160857526, −0.864946238466998714244148432182, 0.864946238466998714244148432182, 2.26607927320469213703160857526, 2.68492287371980531455329544918, 3.22087665149485841437962575171, 4.12229626934867515006504594626, 4.52844504199261714499832165926, 4.90867080535439970632935053629, 5.48960454448931742334640145872, 6.13431711419477769810541152571, 6.48835408883971268939119199881, 7.12485387632655359718601026080, 7.70383442746954505009106361716, 8.091898104800528160801263424980, 8.572448663066506355962139996664, 9.136829845041719869803204909610

Graph of the $Z$-function along the critical line