Properties

Label 4-60e3-1.1-c1e2-0-3
Degree 44
Conductor 216000216000
Sign 11
Analytic cond. 13.772313.7723
Root an. cond. 1.926421.92642
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s + 5-s + 6-s − 3·8-s − 2·9-s + 10-s − 12-s + 15-s − 16-s − 2·18-s − 20-s − 3·24-s + 25-s − 5·27-s + 30-s + 7·31-s + 5·32-s + 2·36-s + 9·37-s − 3·40-s + 3·41-s + 6·43-s − 2·45-s − 48-s + 11·49-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.447·5-s + 0.408·6-s − 1.06·8-s − 2/3·9-s + 0.316·10-s − 0.288·12-s + 0.258·15-s − 1/4·16-s − 0.471·18-s − 0.223·20-s − 0.612·24-s + 1/5·25-s − 0.962·27-s + 0.182·30-s + 1.25·31-s + 0.883·32-s + 1/3·36-s + 1.47·37-s − 0.474·40-s + 0.468·41-s + 0.914·43-s − 0.298·45-s − 0.144·48-s + 11/7·49-s + ⋯

Functional equation

Λ(s)=(216000s/2ΓC(s)2L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(216000s/2ΓC(s+1/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 216000216000    =    2633532^{6} \cdot 3^{3} \cdot 5^{3}
Sign: 11
Analytic conductor: 13.772313.7723
Root analytic conductor: 1.926421.92642
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 216000, ( :1/2,1/2), 1)(4,\ 216000,\ (\ :1/2, 1/2),\ 1)

Particular Values

L(1)L(1) \approx 2.3726865422.372686542
L(12)L(\frac12) \approx 2.3726865422.372686542
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2C2C_2 1T+pT2 1 - T + p T^{2}
3C2C_2 1T+pT2 1 - T + p T^{2}
5C1C_1 1T 1 - T
good7C2C_2 (15T+pT2)(1+5T+pT2) ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} )
11C22C_2^2 16T2+p2T4 1 - 6 T^{2} + p^{2} T^{4}
13C2C_2 (16T+pT2)(1+6T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )
17C22C_2^2 17T2+p2T4 1 - 7 T^{2} + p^{2} T^{4}
19C22C_2^2 110T2+p2T4 1 - 10 T^{2} + p^{2} T^{4}
23C22C_2^2 1+12T2+p2T4 1 + 12 T^{2} + p^{2} T^{4}
29C2C_2 (16T+pT2)(1+6T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )
31C2C_2×\timesC2C_2 (15T+pT2)(12T+pT2) ( 1 - 5 T + p T^{2} )( 1 - 2 T + p T^{2} )
37C2C_2×\timesC2C_2 (18T+pT2)(1T+pT2) ( 1 - 8 T + p T^{2} )( 1 - T + p T^{2} )
41C2C_2×\timesC2C_2 (15T+pT2)(1+2T+pT2) ( 1 - 5 T + p T^{2} )( 1 + 2 T + p T^{2} )
43C2C_2×\timesC2C_2 (110T+pT2)(1+4T+pT2) ( 1 - 10 T + p T^{2} )( 1 + 4 T + p T^{2} )
47C22C_2^2 1+6T2+p2T4 1 + 6 T^{2} + p^{2} T^{4}
53C2C_2×\timesC2C_2 (15T+pT2)(1+10T+pT2) ( 1 - 5 T + p T^{2} )( 1 + 10 T + p T^{2} )
59C22C_2^2 1+15T2+p2T4 1 + 15 T^{2} + p^{2} T^{4}
61C2C_2 (112T+pT2)(1+12T+pT2) ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} )
67C2C_2×\timesC2C_2 (115T+pT2)(19T+pT2) ( 1 - 15 T + p T^{2} )( 1 - 9 T + p T^{2} )
71C2C_2×\timesC2C_2 (1T+pT2)(1+16T+pT2) ( 1 - T + p T^{2} )( 1 + 16 T + p T^{2} )
73C22C_2^2 1140T2+p2T4 1 - 140 T^{2} + p^{2} T^{4}
79C2C_2×\timesC2C_2 (110T+pT2)(14T+pT2) ( 1 - 10 T + p T^{2} )( 1 - 4 T + p T^{2} )
83C2C_2×\timesC2C_2 (1+6T+pT2)(1+9T+pT2) ( 1 + 6 T + p T^{2} )( 1 + 9 T + p T^{2} )
89C2C_2×\timesC2C_2 (1+T+pT2)(1+14T+pT2) ( 1 + T + p T^{2} )( 1 + 14 T + p T^{2} )
97C22C_2^2 1+16T2+p2T4 1 + 16 T^{2} + p^{2} T^{4}
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.041495130659913291796609340518, −8.619379858860742014519478097760, −8.115254595515861403192492614635, −7.82067700085579504791403153644, −7.05437394898644771902617788780, −6.50305877557587626274725562445, −5.90107096445752491992628901869, −5.67717689057213501223549252868, −5.08566268154462671636883732769, −4.34086900423517697146667239338, −4.09772230576046651221897837482, −3.24142362144906189270559175901, −2.75913019632310416779262742028, −2.22449489479160615519463093887, −0.851968183094800304293292875653, 0.851968183094800304293292875653, 2.22449489479160615519463093887, 2.75913019632310416779262742028, 3.24142362144906189270559175901, 4.09772230576046651221897837482, 4.34086900423517697146667239338, 5.08566268154462671636883732769, 5.67717689057213501223549252868, 5.90107096445752491992628901869, 6.50305877557587626274725562445, 7.05437394898644771902617788780, 7.82067700085579504791403153644, 8.115254595515861403192492614635, 8.619379858860742014519478097760, 9.041495130659913291796609340518

Graph of the ZZ-function along the critical line