Properties

Label 4-60e3-1.1-c1e2-0-3
Degree $4$
Conductor $216000$
Sign $1$
Analytic cond. $13.7723$
Root an. cond. $1.92642$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s + 5-s + 6-s − 3·8-s − 2·9-s + 10-s − 12-s + 15-s − 16-s − 2·18-s − 20-s − 3·24-s + 25-s − 5·27-s + 30-s + 7·31-s + 5·32-s + 2·36-s + 9·37-s − 3·40-s + 3·41-s + 6·43-s − 2·45-s − 48-s + 11·49-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.447·5-s + 0.408·6-s − 1.06·8-s − 2/3·9-s + 0.316·10-s − 0.288·12-s + 0.258·15-s − 1/4·16-s − 0.471·18-s − 0.223·20-s − 0.612·24-s + 1/5·25-s − 0.962·27-s + 0.182·30-s + 1.25·31-s + 0.883·32-s + 1/3·36-s + 1.47·37-s − 0.474·40-s + 0.468·41-s + 0.914·43-s − 0.298·45-s − 0.144·48-s + 11/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(216000\)    =    \(2^{6} \cdot 3^{3} \cdot 5^{3}\)
Sign: $1$
Analytic conductor: \(13.7723\)
Root analytic conductor: \(1.92642\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 216000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.372686542\)
\(L(\frac12)\) \(\approx\) \(2.372686542\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + p T^{2} \)
3$C_2$ \( 1 - T + p T^{2} \)
5$C_1$ \( 1 - T \)
good7$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 7 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 12 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 15 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 - 9 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 140 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
83$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
97$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.041495130659913291796609340518, −8.619379858860742014519478097760, −8.115254595515861403192492614635, −7.82067700085579504791403153644, −7.05437394898644771902617788780, −6.50305877557587626274725562445, −5.90107096445752491992628901869, −5.67717689057213501223549252868, −5.08566268154462671636883732769, −4.34086900423517697146667239338, −4.09772230576046651221897837482, −3.24142362144906189270559175901, −2.75913019632310416779262742028, −2.22449489479160615519463093887, −0.851968183094800304293292875653, 0.851968183094800304293292875653, 2.22449489479160615519463093887, 2.75913019632310416779262742028, 3.24142362144906189270559175901, 4.09772230576046651221897837482, 4.34086900423517697146667239338, 5.08566268154462671636883732769, 5.67717689057213501223549252868, 5.90107096445752491992628901869, 6.50305877557587626274725562445, 7.05437394898644771902617788780, 7.82067700085579504791403153644, 8.115254595515861403192492614635, 8.619379858860742014519478097760, 9.041495130659913291796609340518

Graph of the $Z$-function along the critical line