L(s) = 1 | + 2·2-s − 3-s + 2·4-s − 5-s − 2·6-s + 9-s − 2·10-s − 2·12-s + 15-s − 4·16-s + 2·18-s − 2·20-s + 25-s − 27-s + 2·30-s − 20·31-s − 8·32-s + 2·36-s − 45-s + 4·48-s − 10·49-s + 2·50-s + 20·53-s − 2·54-s + 2·60-s − 40·62-s − 8·64-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 0.577·3-s + 4-s − 0.447·5-s − 0.816·6-s + 1/3·9-s − 0.632·10-s − 0.577·12-s + 0.258·15-s − 16-s + 0.471·18-s − 0.447·20-s + 1/5·25-s − 0.192·27-s + 0.365·30-s − 3.59·31-s − 1.41·32-s + 1/3·36-s − 0.149·45-s + 0.577·48-s − 1.42·49-s + 0.282·50-s + 2.74·53-s − 0.272·54-s + 0.258·60-s − 5.08·62-s − 64-s + ⋯ |
Λ(s)=(=(216000s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(216000s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
216000
= 26⋅33⋅53
|
Sign: |
−1
|
Analytic conductor: |
13.7723 |
Root analytic conductor: |
1.92642 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 216000, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−pT+pT2 |
| 3 | C1 | 1+T |
| 5 | C1 | 1+T |
good | 7 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1+pT2)2 |
| 17 | C22 | 1+2T2+p2T4 |
| 19 | C22 | 1−22T2+p2T4 |
| 23 | C22 | 1−30T2+p2T4 |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1+10T+pT2)2 |
| 37 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 41 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C22 | 1−78T2+p2T4 |
| 53 | C2 | (1−10T+pT2)2 |
| 59 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 61 | C22 | 1−58T2+p2T4 |
| 67 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 71 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 73 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 79 | C2 | (1+14T+pT2)2 |
| 83 | C2 | (1+pT2)2 |
| 89 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 97 | C2 | (1−10T+pT2)(1+10T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.796347544631119103074783647720, −8.385333539337096037266712335397, −7.47453418205941725695143179171, −7.27017097594245566397215443793, −6.84957657199386693405152566680, −6.16619991592203718868276685129, −5.68018452289742730764555051785, −5.34999487270269556130717190838, −4.87764075487564301030729914879, −4.11875786665161050620939976019, −3.85363731820904269766144976313, −3.26464349646293471940721383930, −2.45982269552428865640106975011, −1.61170310790947852080742475943, 0,
1.61170310790947852080742475943, 2.45982269552428865640106975011, 3.26464349646293471940721383930, 3.85363731820904269766144976313, 4.11875786665161050620939976019, 4.87764075487564301030729914879, 5.34999487270269556130717190838, 5.68018452289742730764555051785, 6.16619991592203718868276685129, 6.84957657199386693405152566680, 7.27017097594245566397215443793, 7.47453418205941725695143179171, 8.385333539337096037266712335397, 8.796347544631119103074783647720