Properties

Label 4-60e3-1.1-c1e2-0-28
Degree $4$
Conductor $216000$
Sign $-1$
Analytic cond. $13.7723$
Root an. cond. $1.92642$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3-s + 2·4-s + 5-s − 2·6-s + 9-s − 2·10-s + 2·12-s + 15-s − 4·16-s − 2·18-s + 2·20-s + 25-s + 27-s − 2·30-s − 20·31-s + 8·32-s + 2·36-s + 45-s − 4·48-s − 10·49-s − 2·50-s − 20·53-s − 2·54-s + 2·60-s + 40·62-s − 8·64-s + ⋯
L(s)  = 1  − 1.41·2-s + 0.577·3-s + 4-s + 0.447·5-s − 0.816·6-s + 1/3·9-s − 0.632·10-s + 0.577·12-s + 0.258·15-s − 16-s − 0.471·18-s + 0.447·20-s + 1/5·25-s + 0.192·27-s − 0.365·30-s − 3.59·31-s + 1.41·32-s + 1/3·36-s + 0.149·45-s − 0.577·48-s − 1.42·49-s − 0.282·50-s − 2.74·53-s − 0.272·54-s + 0.258·60-s + 5.08·62-s − 64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(216000\)    =    \(2^{6} \cdot 3^{3} \cdot 5^{3}\)
Sign: $-1$
Analytic conductor: \(13.7723\)
Root analytic conductor: \(1.92642\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 216000,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p T^{2} \)
3$C_1$ \( 1 - T \)
5$C_1$ \( 1 - T \)
good7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.777463202787256456016698078145, −8.568121348401068092389681947177, −7.85126782769779844678487827092, −7.55865663172740494140791662232, −7.14925418958104587435907867580, −6.60444979582363780589168413242, −6.03848785485222247521986180613, −5.39414327193829845230627529171, −4.83299639814930091125721935543, −4.14575433902751758600957781044, −3.43838310204251765276920180681, −2.80479014504434913744491313053, −1.80502156484415218287852213649, −1.59243496351402759769462736519, 0, 1.59243496351402759769462736519, 1.80502156484415218287852213649, 2.80479014504434913744491313053, 3.43838310204251765276920180681, 4.14575433902751758600957781044, 4.83299639814930091125721935543, 5.39414327193829845230627529171, 6.03848785485222247521986180613, 6.60444979582363780589168413242, 7.14925418958104587435907867580, 7.55865663172740494140791662232, 7.85126782769779844678487827092, 8.568121348401068092389681947177, 8.777463202787256456016698078145

Graph of the $Z$-function along the critical line