Properties

Label 4-60e3-1.1-c1e2-0-28
Degree 44
Conductor 216000216000
Sign 1-1
Analytic cond. 13.772313.7723
Root an. cond. 1.926421.92642
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 11

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3-s + 2·4-s + 5-s − 2·6-s + 9-s − 2·10-s + 2·12-s + 15-s − 4·16-s − 2·18-s + 2·20-s + 25-s + 27-s − 2·30-s − 20·31-s + 8·32-s + 2·36-s + 45-s − 4·48-s − 10·49-s − 2·50-s − 20·53-s − 2·54-s + 2·60-s + 40·62-s − 8·64-s + ⋯
L(s)  = 1  − 1.41·2-s + 0.577·3-s + 4-s + 0.447·5-s − 0.816·6-s + 1/3·9-s − 0.632·10-s + 0.577·12-s + 0.258·15-s − 16-s − 0.471·18-s + 0.447·20-s + 1/5·25-s + 0.192·27-s − 0.365·30-s − 3.59·31-s + 1.41·32-s + 1/3·36-s + 0.149·45-s − 0.577·48-s − 1.42·49-s − 0.282·50-s − 2.74·53-s − 0.272·54-s + 0.258·60-s + 5.08·62-s − 64-s + ⋯

Functional equation

Λ(s)=(216000s/2ΓC(s)2L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}
Λ(s)=(216000s/2ΓC(s+1/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 216000216000    =    2633532^{6} \cdot 3^{3} \cdot 5^{3}
Sign: 1-1
Analytic conductor: 13.772313.7723
Root analytic conductor: 1.926421.92642
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 11
Selberg data: (4, 216000, ( :1/2,1/2), 1)(4,\ 216000,\ (\ :1/2, 1/2),\ -1)

Particular Values

L(1)L(1) == 00
L(12)L(\frac12) == 00
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2C2C_2 1+pT+pT2 1 + p T + p T^{2}
3C1C_1 1T 1 - T
5C1C_1 1T 1 - T
good7C2C_2 (12T+pT2)(1+2T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )
11C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
13C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
17C22C_2^2 1+2T2+p2T4 1 + 2 T^{2} + p^{2} T^{4}
19C22C_2^2 122T2+p2T4 1 - 22 T^{2} + p^{2} T^{4}
23C22C_2^2 130T2+p2T4 1 - 30 T^{2} + p^{2} T^{4}
29C2C_2 (16T+pT2)(1+6T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )
31C2C_2 (1+10T+pT2)2 ( 1 + 10 T + p T^{2} )^{2}
37C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
41C2C_2 (110T+pT2)(1+10T+pT2) ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} )
43C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
47C22C_2^2 178T2+p2T4 1 - 78 T^{2} + p^{2} T^{4}
53C2C_2 (1+10T+pT2)2 ( 1 + 10 T + p T^{2} )^{2}
59C2C_2 (18T+pT2)(1+8T+pT2) ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} )
61C22C_2^2 158T2+p2T4 1 - 58 T^{2} + p^{2} T^{4}
67C2C_2 (112T+pT2)(1+12T+pT2) ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} )
71C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
73C2C_2 (110T+pT2)(1+10T+pT2) ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} )
79C2C_2 (1+14T+pT2)2 ( 1 + 14 T + p T^{2} )^{2}
83C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
89C2C_2 (114T+pT2)(1+14T+pT2) ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} )
97C2C_2 (110T+pT2)(1+10T+pT2) ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} )
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.777463202787256456016698078145, −8.568121348401068092389681947177, −7.85126782769779844678487827092, −7.55865663172740494140791662232, −7.14925418958104587435907867580, −6.60444979582363780589168413242, −6.03848785485222247521986180613, −5.39414327193829845230627529171, −4.83299639814930091125721935543, −4.14575433902751758600957781044, −3.43838310204251765276920180681, −2.80479014504434913744491313053, −1.80502156484415218287852213649, −1.59243496351402759769462736519, 0, 1.59243496351402759769462736519, 1.80502156484415218287852213649, 2.80479014504434913744491313053, 3.43838310204251765276920180681, 4.14575433902751758600957781044, 4.83299639814930091125721935543, 5.39414327193829845230627529171, 6.03848785485222247521986180613, 6.60444979582363780589168413242, 7.14925418958104587435907867580, 7.55865663172740494140791662232, 7.85126782769779844678487827092, 8.568121348401068092389681947177, 8.777463202787256456016698078145

Graph of the ZZ-function along the critical line