Properties

Label 4-60e3-1.1-c1e2-0-25
Degree 44
Conductor 216000216000
Sign 1-1
Analytic cond. 13.772313.7723
Root an. cond. 1.926421.92642
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 11

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s − 5-s + 6-s − 3·8-s + 9-s − 10-s − 12-s − 4·13-s − 15-s − 16-s − 4·17-s + 18-s + 8·19-s + 20-s − 3·24-s + 25-s − 4·26-s + 27-s + 4·29-s − 30-s + 5·32-s − 4·34-s − 36-s − 20·37-s + 8·38-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 1/2·4-s − 0.447·5-s + 0.408·6-s − 1.06·8-s + 1/3·9-s − 0.316·10-s − 0.288·12-s − 1.10·13-s − 0.258·15-s − 1/4·16-s − 0.970·17-s + 0.235·18-s + 1.83·19-s + 0.223·20-s − 0.612·24-s + 1/5·25-s − 0.784·26-s + 0.192·27-s + 0.742·29-s − 0.182·30-s + 0.883·32-s − 0.685·34-s − 1/6·36-s − 3.28·37-s + 1.29·38-s + ⋯

Functional equation

Λ(s)=(216000s/2ΓC(s)2L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}
Λ(s)=(216000s/2ΓC(s+1/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 216000216000    =    2633532^{6} \cdot 3^{3} \cdot 5^{3}
Sign: 1-1
Analytic conductor: 13.772313.7723
Root analytic conductor: 1.926421.92642
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 11
Selberg data: (4, 216000, ( :1/2,1/2), 1)(4,\ 216000,\ (\ :1/2, 1/2),\ -1)

Particular Values

L(1)L(1) == 00
L(12)L(\frac12) == 00
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2C2C_2 1T+pT2 1 - T + p T^{2}
3C1C_1 1T 1 - T
5C1C_1 1+T 1 + T
good7C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
11C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
13C2C_2 (1+2T+pT2)2 ( 1 + 2 T + p T^{2} )^{2}
17C2C_2 (1+2T+pT2)2 ( 1 + 2 T + p T^{2} )^{2}
19C2C_2 (14T+pT2)2 ( 1 - 4 T + p T^{2} )^{2}
23C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
29C2C_2 (12T+pT2)2 ( 1 - 2 T + p T^{2} )^{2}
31C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
37C2C_2 (1+10T+pT2)2 ( 1 + 10 T + p T^{2} )^{2}
41C2C_2 (110T+pT2)(1+10T+pT2) ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} )
43C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
47C2C_2 (18T+pT2)(1+8T+pT2) ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} )
53C2C_2 (110T+pT2)(1+10T+pT2) ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} )
59C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
61C2C_2 (12T+pT2)(1+2T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )
67C2C_2 (112T+pT2)(1+12T+pT2) ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} )
71C2C_2 (18T+pT2)2 ( 1 - 8 T + p T^{2} )^{2}
73C2C_2 (110T+pT2)(1+10T+pT2) ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} )
79C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
83C2C_2 (1+12T+pT2)2 ( 1 + 12 T + p T^{2} )^{2}
89C2C_2 (16T+pT2)(1+6T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )
97C2C_2 (12T+pT2)(1+2T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.603932276417102120989834189554, −8.554588868470699894187777077269, −7.84465462281701093084420479537, −7.39546104131459972836674622338, −6.76955885158912340897756950945, −6.60942929553535216154216963636, −5.59929057414059862389948014289, −5.04860090093668311608273372623, −4.97287019204270070424993179755, −4.17881549969972779526027182436, −3.63412818236731287070311550143, −3.10526976657196724130917180316, −2.58465419848810939203642390782, −1.51207711394055808445468187309, 0, 1.51207711394055808445468187309, 2.58465419848810939203642390782, 3.10526976657196724130917180316, 3.63412818236731287070311550143, 4.17881549969972779526027182436, 4.97287019204270070424993179755, 5.04860090093668311608273372623, 5.59929057414059862389948014289, 6.60942929553535216154216963636, 6.76955885158912340897756950945, 7.39546104131459972836674622338, 7.84465462281701093084420479537, 8.554588868470699894187777077269, 8.603932276417102120989834189554

Graph of the ZZ-function along the critical line