L(s) = 1 | − 2-s + 2·3-s − 4-s − 5-s − 2·6-s + 3·8-s + 9-s + 10-s − 2·12-s + 3·13-s − 2·15-s − 16-s − 18-s + 20-s + 6·24-s + 25-s − 3·26-s − 4·27-s + 2·30-s − 5·31-s − 5·32-s − 36-s − 21·37-s + 6·39-s − 3·40-s − 12·41-s − 6·43-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.15·3-s − 1/2·4-s − 0.447·5-s − 0.816·6-s + 1.06·8-s + 1/3·9-s + 0.316·10-s − 0.577·12-s + 0.832·13-s − 0.516·15-s − 1/4·16-s − 0.235·18-s + 0.223·20-s + 1.22·24-s + 1/5·25-s − 0.588·26-s − 0.769·27-s + 0.365·30-s − 0.898·31-s − 0.883·32-s − 1/6·36-s − 3.45·37-s + 0.960·39-s − 0.474·40-s − 1.87·41-s − 0.914·43-s + ⋯ |
Λ(s)=(=(216000s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(216000s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
216000
= 26⋅33⋅53
|
Sign: |
−1
|
Analytic conductor: |
13.7723 |
Root analytic conductor: |
1.92642 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 216000, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+pT2 |
| 3 | C2 | 1−2T+pT2 |
| 5 | C1 | 1+T |
good | 7 | C22 | 1−5T2+p2T4 |
| 11 | C22 | 1+15T2+p2T4 |
| 13 | C2×C2 | (1−3T+pT2)(1+pT2) |
| 17 | C22 | 1−25T2+p2T4 |
| 19 | C22 | 1−10T2+p2T4 |
| 23 | C22 | 1+6T2+p2T4 |
| 29 | C22 | 1+4T2+p2T4 |
| 31 | C2×C2 | (1+T+pT2)(1+4T+pT2) |
| 37 | C2 | (1+10T+pT2)(1+11T+pT2) |
| 41 | C2×C2 | (1+2T+pT2)(1+10T+pT2) |
| 43 | C2×C2 | (1+T+pT2)(1+5T+pT2) |
| 47 | C22 | 1−48T2+p2T4 |
| 53 | C2×C2 | (1−10T+pT2)(1+14T+pT2) |
| 59 | C22 | 1+66T2+p2T4 |
| 61 | C22 | 1+29T2+p2T4 |
| 67 | C2×C2 | (1−12T+pT2)(1−6T+pT2) |
| 71 | C2×C2 | (1+T+pT2)(1+8T+pT2) |
| 73 | C22 | 1+94T2+p2T4 |
| 79 | C2×C2 | (1−10T+pT2)(1−T+pT2) |
| 83 | C2×C2 | (1−6T+pT2)(1+9T+pT2) |
| 89 | C2×C2 | (1+8T+pT2)(1+13T+pT2) |
| 97 | C2 | (1−8T+pT2)(1+8T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.699826047687082336822058020289, −8.407925194342252611576426328430, −8.231152763340728022945344952135, −7.47870553299200018880941726522, −7.10715731494937986420727448761, −6.70285091451097027770080096620, −5.83393016259382569689004866228, −5.17580431414177339059990269329, −4.86833177044701056643889722537, −3.81474994039728055277844345254, −3.68885867024609674771432523082, −3.15262185397536829081504012922, −2.04035771938488058529775286099, −1.49891342858877232756243501199, 0,
1.49891342858877232756243501199, 2.04035771938488058529775286099, 3.15262185397536829081504012922, 3.68885867024609674771432523082, 3.81474994039728055277844345254, 4.86833177044701056643889722537, 5.17580431414177339059990269329, 5.83393016259382569689004866228, 6.70285091451097027770080096620, 7.10715731494937986420727448761, 7.47870553299200018880941726522, 8.231152763340728022945344952135, 8.407925194342252611576426328430, 8.699826047687082336822058020289