Properties

Label 4-60e3-1.1-c1e2-0-24
Degree $4$
Conductor $216000$
Sign $-1$
Analytic cond. $13.7723$
Root an. cond. $1.92642$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s − 4-s − 5-s − 2·6-s + 3·8-s + 9-s + 10-s − 2·12-s + 3·13-s − 2·15-s − 16-s − 18-s + 20-s + 6·24-s + 25-s − 3·26-s − 4·27-s + 2·30-s − 5·31-s − 5·32-s − 36-s − 21·37-s + 6·39-s − 3·40-s − 12·41-s − 6·43-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s − 1/2·4-s − 0.447·5-s − 0.816·6-s + 1.06·8-s + 1/3·9-s + 0.316·10-s − 0.577·12-s + 0.832·13-s − 0.516·15-s − 1/4·16-s − 0.235·18-s + 0.223·20-s + 1.22·24-s + 1/5·25-s − 0.588·26-s − 0.769·27-s + 0.365·30-s − 0.898·31-s − 0.883·32-s − 1/6·36-s − 3.45·37-s + 0.960·39-s − 0.474·40-s − 1.87·41-s − 0.914·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(216000\)    =    \(2^{6} \cdot 3^{3} \cdot 5^{3}\)
Sign: $-1$
Analytic conductor: \(13.7723\)
Root analytic conductor: \(1.92642\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 216000,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + p T^{2} \)
3$C_2$ \( 1 - 2 T + p T^{2} \)
5$C_1$ \( 1 + T \)
good7$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 15 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + p T^{2} ) \)
17$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 10 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 48 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 66 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 29 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 94 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - T + p T^{2} ) \)
83$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.699826047687082336822058020289, −8.407925194342252611576426328430, −8.231152763340728022945344952135, −7.47870553299200018880941726522, −7.10715731494937986420727448761, −6.70285091451097027770080096620, −5.83393016259382569689004866228, −5.17580431414177339059990269329, −4.86833177044701056643889722537, −3.81474994039728055277844345254, −3.68885867024609674771432523082, −3.15262185397536829081504012922, −2.04035771938488058529775286099, −1.49891342858877232756243501199, 0, 1.49891342858877232756243501199, 2.04035771938488058529775286099, 3.15262185397536829081504012922, 3.68885867024609674771432523082, 3.81474994039728055277844345254, 4.86833177044701056643889722537, 5.17580431414177339059990269329, 5.83393016259382569689004866228, 6.70285091451097027770080096620, 7.10715731494937986420727448761, 7.47870553299200018880941726522, 8.231152763340728022945344952135, 8.407925194342252611576426328430, 8.699826047687082336822058020289

Graph of the $Z$-function along the critical line