L(s) = 1 | + 3-s − 2·4-s + 5-s − 2·9-s − 2·12-s + 13-s + 15-s + 4·16-s − 2·20-s + 25-s − 5·27-s − 14·31-s + 4·36-s − 8·37-s + 39-s + 9·41-s − 11·43-s − 2·45-s + 4·48-s + 2·49-s − 2·52-s + 3·53-s − 2·60-s − 8·64-s + 65-s − 17·67-s − 9·71-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 4-s + 0.447·5-s − 2/3·9-s − 0.577·12-s + 0.277·13-s + 0.258·15-s + 16-s − 0.447·20-s + 1/5·25-s − 0.962·27-s − 2.51·31-s + 2/3·36-s − 1.31·37-s + 0.160·39-s + 1.40·41-s − 1.67·43-s − 0.298·45-s + 0.577·48-s + 2/7·49-s − 0.277·52-s + 0.412·53-s − 0.258·60-s − 64-s + 0.124·65-s − 2.07·67-s − 1.06·71-s + ⋯ |
Λ(s)=(=(216000s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(216000s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
216000
= 26⋅33⋅53
|
Sign: |
−1
|
Analytic conductor: |
13.7723 |
Root analytic conductor: |
1.92642 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 216000, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+pT2 |
| 3 | C2 | 1−T+pT2 |
| 5 | C1 | 1−T |
good | 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C22 | 1−8T2+p2T4 |
| 13 | C2×C2 | (1−2T+pT2)(1+T+pT2) |
| 17 | C22 | 1+10T2+p2T4 |
| 19 | C22 | 1−5T2+p2T4 |
| 23 | C22 | 1−29T2+p2T4 |
| 29 | C22 | 1−20T2+p2T4 |
| 31 | C2×C2 | (1+4T+pT2)(1+10T+pT2) |
| 37 | C2×C2 | (1−2T+pT2)(1+10T+pT2) |
| 41 | C2×C2 | (1−6T+pT2)(1−3T+pT2) |
| 43 | C2×C2 | (1+T+pT2)(1+10T+pT2) |
| 47 | C22 | 1−23T2+p2T4 |
| 53 | C2×C2 | (1−6T+pT2)(1+3T+pT2) |
| 59 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 61 | C22 | 1+31T2+p2T4 |
| 67 | C2×C2 | (1+4T+pT2)(1+13T+pT2) |
| 71 | C2×C2 | (1−6T+pT2)(1+15T+pT2) |
| 73 | C22 | 1−20T2+p2T4 |
| 79 | C2×C2 | (1+4T+pT2)(1+10T+pT2) |
| 83 | C2×C2 | (1−12T+pT2)(1−6T+pT2) |
| 89 | C2×C2 | (1−6T+pT2)(1+3T+pT2) |
| 97 | C22 | 1+136T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.029973055593751794701534273253, −8.437580779945766317139841544546, −8.010436785697642736041423600877, −7.42819112305891538658843940694, −7.05628584860540280837272529827, −6.24765594036739310828616004723, −5.64808565673135417116444211324, −5.51206865917945044451462215346, −4.79057202611980715265646061167, −4.18535974972689387750755568412, −3.47343971131727371766406808196, −3.21541107080296658914621949913, −2.23362429346088432123663168401, −1.48731869657594409478328408543, 0,
1.48731869657594409478328408543, 2.23362429346088432123663168401, 3.21541107080296658914621949913, 3.47343971131727371766406808196, 4.18535974972689387750755568412, 4.79057202611980715265646061167, 5.51206865917945044451462215346, 5.64808565673135417116444211324, 6.24765594036739310828616004723, 7.05628584860540280837272529827, 7.42819112305891538658843940694, 8.010436785697642736041423600877, 8.437580779945766317139841544546, 9.029973055593751794701534273253