Properties

Label 4-60e3-1.1-c1e2-0-23
Degree $4$
Conductor $216000$
Sign $-1$
Analytic cond. $13.7723$
Root an. cond. $1.92642$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s + 5-s − 2·9-s − 2·12-s + 13-s + 15-s + 4·16-s − 2·20-s + 25-s − 5·27-s − 14·31-s + 4·36-s − 8·37-s + 39-s + 9·41-s − 11·43-s − 2·45-s + 4·48-s + 2·49-s − 2·52-s + 3·53-s − 2·60-s − 8·64-s + 65-s − 17·67-s − 9·71-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s + 0.447·5-s − 2/3·9-s − 0.577·12-s + 0.277·13-s + 0.258·15-s + 16-s − 0.447·20-s + 1/5·25-s − 0.962·27-s − 2.51·31-s + 2/3·36-s − 1.31·37-s + 0.160·39-s + 1.40·41-s − 1.67·43-s − 0.298·45-s + 0.577·48-s + 2/7·49-s − 0.277·52-s + 0.412·53-s − 0.258·60-s − 64-s + 0.124·65-s − 2.07·67-s − 1.06·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(216000\)    =    \(2^{6} \cdot 3^{3} \cdot 5^{3}\)
Sign: $-1$
Analytic conductor: \(13.7723\)
Root analytic conductor: \(1.92642\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 216000,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
3$C_2$ \( 1 - T + p T^{2} \)
5$C_1$ \( 1 - T \)
good7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + T + p T^{2} ) \)
17$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 29 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 23 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2^2$ \( 1 + 31 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
97$C_2^2$ \( 1 + 136 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.029973055593751794701534273253, −8.437580779945766317139841544546, −8.010436785697642736041423600877, −7.42819112305891538658843940694, −7.05628584860540280837272529827, −6.24765594036739310828616004723, −5.64808565673135417116444211324, −5.51206865917945044451462215346, −4.79057202611980715265646061167, −4.18535974972689387750755568412, −3.47343971131727371766406808196, −3.21541107080296658914621949913, −2.23362429346088432123663168401, −1.48731869657594409478328408543, 0, 1.48731869657594409478328408543, 2.23362429346088432123663168401, 3.21541107080296658914621949913, 3.47343971131727371766406808196, 4.18535974972689387750755568412, 4.79057202611980715265646061167, 5.51206865917945044451462215346, 5.64808565673135417116444211324, 6.24765594036739310828616004723, 7.05628584860540280837272529827, 7.42819112305891538658843940694, 8.010436785697642736041423600877, 8.437580779945766317139841544546, 9.029973055593751794701534273253

Graph of the $Z$-function along the critical line