L(s) = 1 | − 2-s + 3-s − 4-s − 5-s − 6-s + 3·8-s + 9-s + 10-s − 12-s − 15-s − 16-s − 18-s − 6·19-s + 20-s + 12·23-s + 3·24-s + 25-s + 27-s + 10·29-s + 30-s − 5·32-s − 36-s + 6·38-s − 3·40-s − 10·43-s − 45-s − 12·46-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s − 1/2·4-s − 0.447·5-s − 0.408·6-s + 1.06·8-s + 1/3·9-s + 0.316·10-s − 0.288·12-s − 0.258·15-s − 1/4·16-s − 0.235·18-s − 1.37·19-s + 0.223·20-s + 2.50·23-s + 0.612·24-s + 1/5·25-s + 0.192·27-s + 1.85·29-s + 0.182·30-s − 0.883·32-s − 1/6·36-s + 0.973·38-s − 0.474·40-s − 1.52·43-s − 0.149·45-s − 1.76·46-s + ⋯ |
Λ(s)=(=(216000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(216000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
216000
= 26⋅33⋅53
|
Sign: |
1
|
Analytic conductor: |
13.7723 |
Root analytic conductor: |
1.92642 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 216000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.096880035 |
L(21) |
≈ |
1.096880035 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+pT2 |
| 3 | C1 | 1−T |
| 5 | C1 | 1+T |
good | 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C22 | 1+4T2+p2T4 |
| 13 | C22 | 1+4T2+p2T4 |
| 17 | C22 | 1+26T2+p2T4 |
| 19 | C2×C2 | (1+pT2)(1+6T+pT2) |
| 23 | C2 | (1−6T+pT2)2 |
| 29 | C2×C2 | (1−6T+pT2)(1−4T+pT2) |
| 31 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 37 | C22 | 1+24T2+p2T4 |
| 41 | C22 | 1−30T2+p2T4 |
| 43 | C2×C2 | (1+2T+pT2)(1+8T+pT2) |
| 47 | C2×C2 | (1+pT2)(1+8T+pT2) |
| 53 | C2×C2 | (1−10T+pT2)(1+6T+pT2) |
| 59 | C22 | 1−32T2+p2T4 |
| 61 | C22 | 1−58T2+p2T4 |
| 67 | C2×C2 | (1−12T+pT2)(1+6T+pT2) |
| 71 | C2×C2 | (1−8T+pT2)(1−2T+pT2) |
| 73 | C2×C2 | (1−16T+pT2)(1+10T+pT2) |
| 79 | C22 | 1−94T2+p2T4 |
| 83 | C22 | 1−46T2+p2T4 |
| 89 | C22 | 1+74T2+p2T4 |
| 97 | C2×C2 | (1+10T+pT2)(1+14T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.892399351428167215131965300837, −8.544030733817935620568279576532, −8.265344842528523210883241623812, −7.902520218753514335027686044494, −7.15209964462953520184720736322, −6.72521606672367475647233337637, −6.53468878473785351919474017241, −5.38535674461546969487184019211, −4.97535280951748912982547092092, −4.50946846798418509258280508548, −3.95532995302561227890190721683, −3.23904594666351099422428199201, −2.66889019243147502869235143114, −1.67986934782382229520815967235, −0.75507799196260966330798213842,
0.75507799196260966330798213842, 1.67986934782382229520815967235, 2.66889019243147502869235143114, 3.23904594666351099422428199201, 3.95532995302561227890190721683, 4.50946846798418509258280508548, 4.97535280951748912982547092092, 5.38535674461546969487184019211, 6.53468878473785351919474017241, 6.72521606672367475647233337637, 7.15209964462953520184720736322, 7.902520218753514335027686044494, 8.265344842528523210883241623812, 8.544030733817935620568279576532, 8.892399351428167215131965300837