Properties

Label 4-60e3-1.1-c1e2-0-2
Degree $4$
Conductor $216000$
Sign $1$
Analytic cond. $13.7723$
Root an. cond. $1.92642$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s − 4-s − 5-s − 6-s + 3·8-s + 9-s + 10-s − 12-s − 15-s − 16-s − 18-s − 6·19-s + 20-s + 12·23-s + 3·24-s + 25-s + 27-s + 10·29-s + 30-s − 5·32-s − 36-s + 6·38-s − 3·40-s − 10·43-s − 45-s − 12·46-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s − 1/2·4-s − 0.447·5-s − 0.408·6-s + 1.06·8-s + 1/3·9-s + 0.316·10-s − 0.288·12-s − 0.258·15-s − 1/4·16-s − 0.235·18-s − 1.37·19-s + 0.223·20-s + 2.50·23-s + 0.612·24-s + 1/5·25-s + 0.192·27-s + 1.85·29-s + 0.182·30-s − 0.883·32-s − 1/6·36-s + 0.973·38-s − 0.474·40-s − 1.52·43-s − 0.149·45-s − 1.76·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(216000\)    =    \(2^{6} \cdot 3^{3} \cdot 5^{3}\)
Sign: $1$
Analytic conductor: \(13.7723\)
Root analytic conductor: \(1.92642\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 216000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.096880035\)
\(L(\frac12)\) \(\approx\) \(1.096880035\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + p T^{2} \)
3$C_1$ \( 1 - T \)
5$C_1$ \( 1 + T \)
good7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$C_2^2$ \( 1 + 24 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 32 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 + 10 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.892399351428167215131965300837, −8.544030733817935620568279576532, −8.265344842528523210883241623812, −7.902520218753514335027686044494, −7.15209964462953520184720736322, −6.72521606672367475647233337637, −6.53468878473785351919474017241, −5.38535674461546969487184019211, −4.97535280951748912982547092092, −4.50946846798418509258280508548, −3.95532995302561227890190721683, −3.23904594666351099422428199201, −2.66889019243147502869235143114, −1.67986934782382229520815967235, −0.75507799196260966330798213842, 0.75507799196260966330798213842, 1.67986934782382229520815967235, 2.66889019243147502869235143114, 3.23904594666351099422428199201, 3.95532995302561227890190721683, 4.50946846798418509258280508548, 4.97535280951748912982547092092, 5.38535674461546969487184019211, 6.53468878473785351919474017241, 6.72521606672367475647233337637, 7.15209964462953520184720736322, 7.902520218753514335027686044494, 8.265344842528523210883241623812, 8.544030733817935620568279576532, 8.892399351428167215131965300837

Graph of the $Z$-function along the critical line