Properties

Label 4-60e3-1.1-c1e2-0-14
Degree 44
Conductor 216000216000
Sign 1-1
Analytic cond. 13.772313.7723
Root an. cond. 1.926421.92642
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 11

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s − 4-s + 5-s − 2·6-s − 3·8-s + 9-s + 10-s + 2·12-s − 3·13-s − 2·15-s − 16-s + 18-s − 20-s + 6·24-s + 25-s − 3·26-s + 4·27-s − 2·30-s − 5·31-s + 5·32-s − 36-s + 21·37-s + 6·39-s − 3·40-s − 12·41-s + 6·43-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s − 1/2·4-s + 0.447·5-s − 0.816·6-s − 1.06·8-s + 1/3·9-s + 0.316·10-s + 0.577·12-s − 0.832·13-s − 0.516·15-s − 1/4·16-s + 0.235·18-s − 0.223·20-s + 1.22·24-s + 1/5·25-s − 0.588·26-s + 0.769·27-s − 0.365·30-s − 0.898·31-s + 0.883·32-s − 1/6·36-s + 3.45·37-s + 0.960·39-s − 0.474·40-s − 1.87·41-s + 0.914·43-s + ⋯

Functional equation

Λ(s)=(216000s/2ΓC(s)2L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}
Λ(s)=(216000s/2ΓC(s+1/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 216000216000    =    2633532^{6} \cdot 3^{3} \cdot 5^{3}
Sign: 1-1
Analytic conductor: 13.772313.7723
Root analytic conductor: 1.926421.92642
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 11
Selberg data: (4, 216000, ( :1/2,1/2), 1)(4,\ 216000,\ (\ :1/2, 1/2),\ -1)

Particular Values

L(1)L(1) == 00
L(12)L(\frac12) == 00
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2C2C_2 1T+pT2 1 - T + p T^{2}
3C2C_2 1+2T+pT2 1 + 2 T + p T^{2}
5C1C_1 1T 1 - T
good7C22C_2^2 15T2+p2T4 1 - 5 T^{2} + p^{2} T^{4}
11C22C_2^2 1+15T2+p2T4 1 + 15 T^{2} + p^{2} T^{4}
13C2C_2×\timesC2C_2 (1+pT2)(1+3T+pT2) ( 1 + p T^{2} )( 1 + 3 T + p T^{2} )
17C22C_2^2 125T2+p2T4 1 - 25 T^{2} + p^{2} T^{4}
19C22C_2^2 110T2+p2T4 1 - 10 T^{2} + p^{2} T^{4}
23C22C_2^2 1+6T2+p2T4 1 + 6 T^{2} + p^{2} T^{4}
29C22C_2^2 1+4T2+p2T4 1 + 4 T^{2} + p^{2} T^{4}
31C2C_2×\timesC2C_2 (1+T+pT2)(1+4T+pT2) ( 1 + T + p T^{2} )( 1 + 4 T + p T^{2} )
37C2C_2 (111T+pT2)(110T+pT2) ( 1 - 11 T + p T^{2} )( 1 - 10 T + p T^{2} )
41C2C_2×\timesC2C_2 (1+2T+pT2)(1+10T+pT2) ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} )
43C2C_2×\timesC2C_2 (15T+pT2)(1T+pT2) ( 1 - 5 T + p T^{2} )( 1 - T + p T^{2} )
47C22C_2^2 148T2+p2T4 1 - 48 T^{2} + p^{2} T^{4}
53C2C_2×\timesC2C_2 (114T+pT2)(1+10T+pT2) ( 1 - 14 T + p T^{2} )( 1 + 10 T + p T^{2} )
59C22C_2^2 1+66T2+p2T4 1 + 66 T^{2} + p^{2} T^{4}
61C22C_2^2 1+29T2+p2T4 1 + 29 T^{2} + p^{2} T^{4}
67C2C_2×\timesC2C_2 (1+6T+pT2)(1+12T+pT2) ( 1 + 6 T + p T^{2} )( 1 + 12 T + p T^{2} )
71C2C_2×\timesC2C_2 (1+T+pT2)(1+8T+pT2) ( 1 + T + p T^{2} )( 1 + 8 T + p T^{2} )
73C22C_2^2 1+94T2+p2T4 1 + 94 T^{2} + p^{2} T^{4}
79C2C_2×\timesC2C_2 (110T+pT2)(1T+pT2) ( 1 - 10 T + p T^{2} )( 1 - T + p T^{2} )
83C2C_2×\timesC2C_2 (19T+pT2)(1+6T+pT2) ( 1 - 9 T + p T^{2} )( 1 + 6 T + p T^{2} )
89C2C_2×\timesC2C_2 (1+8T+pT2)(1+13T+pT2) ( 1 + 8 T + p T^{2} )( 1 + 13 T + p T^{2} )
97C2C_2 (18T+pT2)(1+8T+pT2) ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} )
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.887315493381641812267299163801, −8.374423639377667927524653520276, −7.76808777023899919160207095193, −7.25501711906557838799046022847, −6.67280506232813047140348475762, −6.09074702637691696932449821103, −5.86161561269523103309967568139, −5.31293846655662422468106502640, −4.92577200972167713662162849286, −4.34846347650913340301442118410, −3.92732225976336392665964410174, −2.90913798276067540906908593947, −2.51938651871105125230691073633, −1.20070290550731468156386632464, 0, 1.20070290550731468156386632464, 2.51938651871105125230691073633, 2.90913798276067540906908593947, 3.92732225976336392665964410174, 4.34846347650913340301442118410, 4.92577200972167713662162849286, 5.31293846655662422468106502640, 5.86161561269523103309967568139, 6.09074702637691696932449821103, 6.67280506232813047140348475762, 7.25501711906557838799046022847, 7.76808777023899919160207095193, 8.374423639377667927524653520276, 8.887315493381641812267299163801

Graph of the ZZ-function along the critical line