Properties

Label 4-60e3-1.1-c1e2-0-14
Degree $4$
Conductor $216000$
Sign $-1$
Analytic cond. $13.7723$
Root an. cond. $1.92642$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s − 4-s + 5-s − 2·6-s − 3·8-s + 9-s + 10-s + 2·12-s − 3·13-s − 2·15-s − 16-s + 18-s − 20-s + 6·24-s + 25-s − 3·26-s + 4·27-s − 2·30-s − 5·31-s + 5·32-s − 36-s + 21·37-s + 6·39-s − 3·40-s − 12·41-s + 6·43-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s − 1/2·4-s + 0.447·5-s − 0.816·6-s − 1.06·8-s + 1/3·9-s + 0.316·10-s + 0.577·12-s − 0.832·13-s − 0.516·15-s − 1/4·16-s + 0.235·18-s − 0.223·20-s + 1.22·24-s + 1/5·25-s − 0.588·26-s + 0.769·27-s − 0.365·30-s − 0.898·31-s + 0.883·32-s − 1/6·36-s + 3.45·37-s + 0.960·39-s − 0.474·40-s − 1.87·41-s + 0.914·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(216000\)    =    \(2^{6} \cdot 3^{3} \cdot 5^{3}\)
Sign: $-1$
Analytic conductor: \(13.7723\)
Root analytic conductor: \(1.92642\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 216000,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + p T^{2} \)
3$C_2$ \( 1 + 2 T + p T^{2} \)
5$C_1$ \( 1 - T \)
good7$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 15 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 3 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 - 10 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 - T + p T^{2} ) \)
47$C_2^2$ \( 1 - 48 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 66 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 29 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 94 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - T + p T^{2} ) \)
83$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.887315493381641812267299163801, −8.374423639377667927524653520276, −7.76808777023899919160207095193, −7.25501711906557838799046022847, −6.67280506232813047140348475762, −6.09074702637691696932449821103, −5.86161561269523103309967568139, −5.31293846655662422468106502640, −4.92577200972167713662162849286, −4.34846347650913340301442118410, −3.92732225976336392665964410174, −2.90913798276067540906908593947, −2.51938651871105125230691073633, −1.20070290550731468156386632464, 0, 1.20070290550731468156386632464, 2.51938651871105125230691073633, 2.90913798276067540906908593947, 3.92732225976336392665964410174, 4.34846347650913340301442118410, 4.92577200972167713662162849286, 5.31293846655662422468106502640, 5.86161561269523103309967568139, 6.09074702637691696932449821103, 6.67280506232813047140348475762, 7.25501711906557838799046022847, 7.76808777023899919160207095193, 8.374423639377667927524653520276, 8.887315493381641812267299163801

Graph of the $Z$-function along the critical line