L(s) = 1 | + 2·2-s + 3-s + 2·4-s − 5-s + 2·6-s + 9-s − 2·10-s + 2·12-s − 15-s − 4·16-s + 2·18-s − 2·20-s + 12·23-s + 25-s + 27-s + 10·29-s − 2·30-s − 8·32-s + 2·36-s + 8·43-s − 45-s + 24·46-s + 4·47-s − 4·48-s − 10·49-s + 2·50-s − 8·53-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 0.577·3-s + 4-s − 0.447·5-s + 0.816·6-s + 1/3·9-s − 0.632·10-s + 0.577·12-s − 0.258·15-s − 16-s + 0.471·18-s − 0.447·20-s + 2.50·23-s + 1/5·25-s + 0.192·27-s + 1.85·29-s − 0.365·30-s − 1.41·32-s + 1/3·36-s + 1.21·43-s − 0.149·45-s + 3.53·46-s + 0.583·47-s − 0.577·48-s − 1.42·49-s + 0.282·50-s − 1.09·53-s + ⋯ |
Λ(s)=(=(216000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(216000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
216000
= 26⋅33⋅53
|
Sign: |
1
|
Analytic conductor: |
13.7723 |
Root analytic conductor: |
1.92642 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 216000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
4.162069031 |
L(21) |
≈ |
4.162069031 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−pT+pT2 |
| 3 | C1 | 1−T |
| 5 | C1 | 1+T |
good | 7 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 11 | C22 | 1−2T2+p2T4 |
| 13 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C22 | 1−10T2+p2T4 |
| 19 | C2 | (1+pT2)2 |
| 23 | C2 | (1−6T+pT2)2 |
| 29 | C2×C2 | (1−10T+pT2)(1+pT2) |
| 31 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 37 | C22 | 1−30T2+p2T4 |
| 41 | C22 | 1−42T2+p2T4 |
| 43 | C2 | (1−4T+pT2)2 |
| 47 | C2×C2 | (1−12T+pT2)(1+8T+pT2) |
| 53 | C2×C2 | (1−6T+pT2)(1+14T+pT2) |
| 59 | C22 | 1−2T2+p2T4 |
| 61 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 67 | C2 | (1+12T+pT2)2 |
| 71 | C2 | (1−8T+pT2)2 |
| 73 | C2×C2 | (1−14T+pT2)(1−4T+pT2) |
| 79 | C22 | 1−82T2+p2T4 |
| 83 | C22 | 1+50T2+p2T4 |
| 89 | C22 | 1−82T2+p2T4 |
| 97 | C2×C2 | (1−8T+pT2)(1+2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.963134976875332410550837868755, −8.657968102763697321620128690150, −7.998362829294470925327343124130, −7.53885251381440898433031798219, −7.01325793013184944469112654608, −6.50757219156439507333081149228, −6.21841312997577567139299736727, −5.35930529872856387675389024109, −4.87191825277757691038211661892, −4.61465994793805005819745900336, −3.96187051825471841097070685011, −3.20581269290493402875849813307, −3.01888100048798853558195810431, −2.28832826282711051669350915460, −1.06272008942114379011094572988,
1.06272008942114379011094572988, 2.28832826282711051669350915460, 3.01888100048798853558195810431, 3.20581269290493402875849813307, 3.96187051825471841097070685011, 4.61465994793805005819745900336, 4.87191825277757691038211661892, 5.35930529872856387675389024109, 6.21841312997577567139299736727, 6.50757219156439507333081149228, 7.01325793013184944469112654608, 7.53885251381440898433031798219, 7.998362829294470925327343124130, 8.657968102763697321620128690150, 8.963134976875332410550837868755