Properties

Label 4-60e3-1.1-c1e2-0-11
Degree $4$
Conductor $216000$
Sign $-1$
Analytic cond. $13.7723$
Root an. cond. $1.92642$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·4-s − 5-s − 2·9-s + 2·12-s − 13-s + 15-s + 4·16-s + 2·20-s + 25-s + 5·27-s − 14·31-s + 4·36-s + 8·37-s + 39-s + 9·41-s + 11·43-s + 2·45-s − 4·48-s + 2·49-s + 2·52-s − 3·53-s − 2·60-s − 8·64-s + 65-s + 17·67-s − 9·71-s + ⋯
L(s)  = 1  − 0.577·3-s − 4-s − 0.447·5-s − 2/3·9-s + 0.577·12-s − 0.277·13-s + 0.258·15-s + 16-s + 0.447·20-s + 1/5·25-s + 0.962·27-s − 2.51·31-s + 2/3·36-s + 1.31·37-s + 0.160·39-s + 1.40·41-s + 1.67·43-s + 0.298·45-s − 0.577·48-s + 2/7·49-s + 0.277·52-s − 0.412·53-s − 0.258·60-s − 64-s + 0.124·65-s + 2.07·67-s − 1.06·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(216000\)    =    \(2^{6} \cdot 3^{3} \cdot 5^{3}\)
Sign: $-1$
Analytic conductor: \(13.7723\)
Root analytic conductor: \(1.92642\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 216000,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
3$C_2$ \( 1 + T + p T^{2} \)
5$C_1$ \( 1 + T \)
good7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 29 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - T + p T^{2} ) \)
47$C_2^2$ \( 1 - 23 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2^2$ \( 1 + 31 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
97$C_2^2$ \( 1 + 136 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.933704118300936802591523900027, −8.432953852457324344679654943509, −7.76492047294845852924304826356, −7.50792686685256150029334773001, −6.99299729246842230861448013078, −6.16613662934134908604003916356, −5.71806650566000179487289720171, −5.48323312196914960455202802870, −4.76738470375839414337236762761, −4.25906761632603670109845527152, −3.79996533598904598436090270715, −3.06483335293129371128757025033, −2.33517872487363433910125537907, −1.04459128719907683856615859851, 0, 1.04459128719907683856615859851, 2.33517872487363433910125537907, 3.06483335293129371128757025033, 3.79996533598904598436090270715, 4.25906761632603670109845527152, 4.76738470375839414337236762761, 5.48323312196914960455202802870, 5.71806650566000179487289720171, 6.16613662934134908604003916356, 6.99299729246842230861448013078, 7.50792686685256150029334773001, 7.76492047294845852924304826356, 8.432953852457324344679654943509, 8.933704118300936802591523900027

Graph of the $Z$-function along the critical line