L(s) = 1 | − 3-s − 2·4-s − 5-s − 2·9-s + 2·12-s − 13-s + 15-s + 4·16-s + 2·20-s + 25-s + 5·27-s − 14·31-s + 4·36-s + 8·37-s + 39-s + 9·41-s + 11·43-s + 2·45-s − 4·48-s + 2·49-s + 2·52-s − 3·53-s − 2·60-s − 8·64-s + 65-s + 17·67-s − 9·71-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 4-s − 0.447·5-s − 2/3·9-s + 0.577·12-s − 0.277·13-s + 0.258·15-s + 16-s + 0.447·20-s + 1/5·25-s + 0.962·27-s − 2.51·31-s + 2/3·36-s + 1.31·37-s + 0.160·39-s + 1.40·41-s + 1.67·43-s + 0.298·45-s − 0.577·48-s + 2/7·49-s + 0.277·52-s − 0.412·53-s − 0.258·60-s − 64-s + 0.124·65-s + 2.07·67-s − 1.06·71-s + ⋯ |
Λ(s)=(=(216000s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(216000s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
216000
= 26⋅33⋅53
|
Sign: |
−1
|
Analytic conductor: |
13.7723 |
Root analytic conductor: |
1.92642 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 216000, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+pT2 |
| 3 | C2 | 1+T+pT2 |
| 5 | C1 | 1+T |
good | 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C22 | 1−8T2+p2T4 |
| 13 | C2×C2 | (1−T+pT2)(1+2T+pT2) |
| 17 | C22 | 1+10T2+p2T4 |
| 19 | C22 | 1−5T2+p2T4 |
| 23 | C22 | 1−29T2+p2T4 |
| 29 | C22 | 1−20T2+p2T4 |
| 31 | C2×C2 | (1+4T+pT2)(1+10T+pT2) |
| 37 | C2×C2 | (1−10T+pT2)(1+2T+pT2) |
| 41 | C2×C2 | (1−6T+pT2)(1−3T+pT2) |
| 43 | C2×C2 | (1−10T+pT2)(1−T+pT2) |
| 47 | C22 | 1−23T2+p2T4 |
| 53 | C2×C2 | (1−3T+pT2)(1+6T+pT2) |
| 59 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 61 | C22 | 1+31T2+p2T4 |
| 67 | C2×C2 | (1−13T+pT2)(1−4T+pT2) |
| 71 | C2×C2 | (1−6T+pT2)(1+15T+pT2) |
| 73 | C22 | 1−20T2+p2T4 |
| 79 | C2×C2 | (1+4T+pT2)(1+10T+pT2) |
| 83 | C2×C2 | (1+6T+pT2)(1+12T+pT2) |
| 89 | C2×C2 | (1−6T+pT2)(1+3T+pT2) |
| 97 | C22 | 1+136T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.933704118300936802591523900027, −8.432953852457324344679654943509, −7.76492047294845852924304826356, −7.50792686685256150029334773001, −6.99299729246842230861448013078, −6.16613662934134908604003916356, −5.71806650566000179487289720171, −5.48323312196914960455202802870, −4.76738470375839414337236762761, −4.25906761632603670109845527152, −3.79996533598904598436090270715, −3.06483335293129371128757025033, −2.33517872487363433910125537907, −1.04459128719907683856615859851, 0,
1.04459128719907683856615859851, 2.33517872487363433910125537907, 3.06483335293129371128757025033, 3.79996533598904598436090270715, 4.25906761632603670109845527152, 4.76738470375839414337236762761, 5.48323312196914960455202802870, 5.71806650566000179487289720171, 6.16613662934134908604003916356, 6.99299729246842230861448013078, 7.50792686685256150029334773001, 7.76492047294845852924304826356, 8.432953852457324344679654943509, 8.933704118300936802591523900027