Properties

Label 4-60e3-1.1-c1e2-0-1
Degree 44
Conductor 216000216000
Sign 11
Analytic cond. 13.772313.7723
Root an. cond. 1.926421.92642
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s − 4-s − 5-s + 6-s + 3·8-s + 9-s + 10-s + 12-s + 6·13-s + 15-s − 16-s − 18-s + 20-s − 3·24-s + 25-s − 6·26-s − 27-s − 30-s + 16·31-s − 5·32-s − 36-s − 6·37-s − 6·39-s − 3·40-s + 6·41-s − 45-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.447·5-s + 0.408·6-s + 1.06·8-s + 1/3·9-s + 0.316·10-s + 0.288·12-s + 1.66·13-s + 0.258·15-s − 1/4·16-s − 0.235·18-s + 0.223·20-s − 0.612·24-s + 1/5·25-s − 1.17·26-s − 0.192·27-s − 0.182·30-s + 2.87·31-s − 0.883·32-s − 1/6·36-s − 0.986·37-s − 0.960·39-s − 0.474·40-s + 0.937·41-s − 0.149·45-s + ⋯

Functional equation

Λ(s)=(216000s/2ΓC(s)2L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(216000s/2ΓC(s+1/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 216000216000    =    2633532^{6} \cdot 3^{3} \cdot 5^{3}
Sign: 11
Analytic conductor: 13.772313.7723
Root analytic conductor: 1.926421.92642
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 216000, ( :1/2,1/2), 1)(4,\ 216000,\ (\ :1/2, 1/2),\ 1)

Particular Values

L(1)L(1) \approx 0.81278485910.8127848591
L(12)L(\frac12) \approx 0.81278485910.8127848591
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2C2C_2 1+T+pT2 1 + T + p T^{2}
3C1C_1 1+T 1 + T
5C1C_1 1+T 1 + T
good7C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
11C22C_2^2 16T2+p2T4 1 - 6 T^{2} + p^{2} T^{4}
13C2C_2×\timesC2C_2 (16T+pT2)(1+pT2) ( 1 - 6 T + p T^{2} )( 1 + p T^{2} )
17C22C_2^2 1+2T2+p2T4 1 + 2 T^{2} + p^{2} T^{4}
19C22C_2^2 110T2+p2T4 1 - 10 T^{2} + p^{2} T^{4}
23C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
29C2C_2 (16T+pT2)(1+6T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )
31C2C_2 (18T+pT2)2 ( 1 - 8 T + p T^{2} )^{2}
37C2C_2×\timesC2C_2 (1+2T+pT2)(1+4T+pT2) ( 1 + 2 T + p T^{2} )( 1 + 4 T + p T^{2} )
41C2C_2×\timesC2C_2 (14T+pT2)(12T+pT2) ( 1 - 4 T + p T^{2} )( 1 - 2 T + p T^{2} )
43C2C_2 (12T+pT2)(1+2T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )
47C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
53C2C_2 (1+2T+pT2)2 ( 1 + 2 T + p T^{2} )^{2}
59C22C_2^2 166T2+p2T4 1 - 66 T^{2} + p^{2} T^{4}
61C22C_2^2 1+50T2+p2T4 1 + 50 T^{2} + p^{2} T^{4}
67C2C_2×\timesC2C_2 (112T+pT2)(1+pT2) ( 1 - 12 T + p T^{2} )( 1 + p T^{2} )
71C2C_2×\timesC2C_2 (110T+pT2)(12T+pT2) ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} )
73C22C_2^2 1+94T2+p2T4 1 + 94 T^{2} + p^{2} T^{4}
79C2C_2×\timesC2C_2 (14T+pT2)(1+8T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} )
83C2C_2×\timesC2C_2 (1+pT2)(1+12T+pT2) ( 1 + p T^{2} )( 1 + 12 T + p T^{2} )
89C2C_2×\timesC2C_2 (114T+pT2)(1+8T+pT2) ( 1 - 14 T + p T^{2} )( 1 + 8 T + p T^{2} )
97C22C_2^2 174T2+p2T4 1 - 74 T^{2} + p^{2} T^{4}
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.905977212366117482335025310366, −8.566266728237752344812164323656, −8.164784813489564550585907462237, −7.85923543569937005011130177851, −7.14084006027180754987274182931, −6.68518872303551465466396243472, −6.16695895670544286351716080604, −5.71340205752869075700678895457, −4.93302791533296556425176498902, −4.60404315210379879095503014039, −3.91910375636700705199954650109, −3.52181352865394515288844372408, −2.54400172959357573602668819491, −1.39941922193662355717119149365, −0.75115206295181260150647173214, 0.75115206295181260150647173214, 1.39941922193662355717119149365, 2.54400172959357573602668819491, 3.52181352865394515288844372408, 3.91910375636700705199954650109, 4.60404315210379879095503014039, 4.93302791533296556425176498902, 5.71340205752869075700678895457, 6.16695895670544286351716080604, 6.68518872303551465466396243472, 7.14084006027180754987274182931, 7.85923543569937005011130177851, 8.164784813489564550585907462237, 8.566266728237752344812164323656, 8.905977212366117482335025310366

Graph of the ZZ-function along the critical line