Properties

Label 4-60e3-1.1-c1e2-0-1
Degree $4$
Conductor $216000$
Sign $1$
Analytic cond. $13.7723$
Root an. cond. $1.92642$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s − 4-s − 5-s + 6-s + 3·8-s + 9-s + 10-s + 12-s + 6·13-s + 15-s − 16-s − 18-s + 20-s − 3·24-s + 25-s − 6·26-s − 27-s − 30-s + 16·31-s − 5·32-s − 36-s − 6·37-s − 6·39-s − 3·40-s + 6·41-s − 45-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.447·5-s + 0.408·6-s + 1.06·8-s + 1/3·9-s + 0.316·10-s + 0.288·12-s + 1.66·13-s + 0.258·15-s − 1/4·16-s − 0.235·18-s + 0.223·20-s − 0.612·24-s + 1/5·25-s − 1.17·26-s − 0.192·27-s − 0.182·30-s + 2.87·31-s − 0.883·32-s − 1/6·36-s − 0.986·37-s − 0.960·39-s − 0.474·40-s + 0.937·41-s − 0.149·45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(216000\)    =    \(2^{6} \cdot 3^{3} \cdot 5^{3}\)
Sign: $1$
Analytic conductor: \(13.7723\)
Root analytic conductor: \(1.92642\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 216000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8127848591\)
\(L(\frac12)\) \(\approx\) \(0.8127848591\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + p T^{2} \)
3$C_1$ \( 1 + T \)
5$C_1$ \( 1 + T \)
good7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 94 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
97$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.905977212366117482335025310366, −8.566266728237752344812164323656, −8.164784813489564550585907462237, −7.85923543569937005011130177851, −7.14084006027180754987274182931, −6.68518872303551465466396243472, −6.16695895670544286351716080604, −5.71340205752869075700678895457, −4.93302791533296556425176498902, −4.60404315210379879095503014039, −3.91910375636700705199954650109, −3.52181352865394515288844372408, −2.54400172959357573602668819491, −1.39941922193662355717119149365, −0.75115206295181260150647173214, 0.75115206295181260150647173214, 1.39941922193662355717119149365, 2.54400172959357573602668819491, 3.52181352865394515288844372408, 3.91910375636700705199954650109, 4.60404315210379879095503014039, 4.93302791533296556425176498902, 5.71340205752869075700678895457, 6.16695895670544286351716080604, 6.68518872303551465466396243472, 7.14084006027180754987274182931, 7.85923543569937005011130177851, 8.164784813489564550585907462237, 8.566266728237752344812164323656, 8.905977212366117482335025310366

Graph of the $Z$-function along the critical line