L(s) = 1 | + 6·3-s − 2·7-s + 27·9-s + 74·11-s + 98·13-s − 78·17-s − 80·19-s − 12·21-s + 40·23-s + 108·27-s + 50·29-s − 12·31-s + 444·33-s − 34·37-s + 588·39-s + 344·41-s + 216·43-s + 876·47-s + 478·49-s − 468·51-s − 634·53-s − 480·57-s + 666·59-s + 244·61-s − 54·63-s − 980·67-s + 240·69-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.107·7-s + 9-s + 2.02·11-s + 2.09·13-s − 1.11·17-s − 0.965·19-s − 0.124·21-s + 0.362·23-s + 0.769·27-s + 0.320·29-s − 0.0695·31-s + 2.34·33-s − 0.151·37-s + 2.41·39-s + 1.31·41-s + 0.766·43-s + 2.71·47-s + 1.39·49-s − 1.28·51-s − 1.64·53-s − 1.11·57-s + 1.46·59-s + 0.512·61-s − 0.107·63-s − 1.78·67-s + 0.418·69-s + ⋯ |
Λ(s)=(=(360000s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(360000s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
360000
= 26⋅32⋅54
|
Sign: |
1
|
Analytic conductor: |
1253.24 |
Root analytic conductor: |
5.94988 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 360000, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
7.032068507 |
L(21) |
≈ |
7.032068507 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1−pT)2 |
| 5 | | 1 |
good | 7 | D4 | 1+2T−474T2+2p3T3+p6T4 |
| 11 | D4 | 1−74T+3902T2−74p3T3+p6T4 |
| 13 | D4 | 1−98T+6666T2−98p3T3+p6T4 |
| 17 | D4 | 1+78T+8122T2+78p3T3+p6T4 |
| 19 | D4 | 1+80T+7062T2+80p3T3+p6T4 |
| 23 | D4 | 1−40T+16478T2−40p3T3+p6T4 |
| 29 | D4 | 1−50T+43082T2−50p3T3+p6T4 |
| 31 | D4 | 1+12T+17822T2+12p3T3+p6T4 |
| 37 | D4 | 1+34T+20970T2+34p3T3+p6T4 |
| 41 | D4 | 1−344T+162782T2−344p3T3+p6T4 |
| 43 | C2 | (1−108T+p3T2)2 |
| 47 | D4 | 1−876T+374206T2−876p3T3+p6T4 |
| 53 | D4 | 1+634T+398114T2+634p3T3+p6T4 |
| 59 | D4 | 1−666T+211918T2−666p3T3+p6T4 |
| 61 | D4 | 1−4pT+336750T2−4p4T3+p6T4 |
| 67 | D4 | 1+980T+692502T2+980p3T3+p6T4 |
| 71 | D4 | 1−308T+553262T2−308p3T3+p6T4 |
| 73 | D4 | 1+1412T+1090194T2+1412p3T3+p6T4 |
| 79 | D4 | 1−1052T+1237470T2−1052p3T3+p6T4 |
| 83 | D4 | 1−248T+1125926T2−248p3T3+p6T4 |
| 89 | D4 | 1−684T+1229686T2−684p3T3+p6T4 |
| 97 | D4 | 1+1840T+2539650T2+1840p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.43669562557646710216880811053, −10.09245799164554459136708975461, −9.144174632756916275628198108521, −9.007976491055808414617689994244, −8.945264403197844514153305746816, −8.604158444337866192502816749637, −7.82508521488061386966684652062, −7.49158388172521085927568310919, −6.73167191810326642606979893971, −6.59977515281625863186987996291, −6.02489169493280744427615631852, −5.69008575347177264158215849218, −4.39103178831439506798597622572, −4.36659344771878606735265885512, −3.79091446818388749661376483537, −3.45150280540685777266176179308, −2.57134343184453226264169563816, −2.05391789906745569314344577312, −1.25673155729579359690571827219, −0.827335399725095797662936038173,
0.827335399725095797662936038173, 1.25673155729579359690571827219, 2.05391789906745569314344577312, 2.57134343184453226264169563816, 3.45150280540685777266176179308, 3.79091446818388749661376483537, 4.36659344771878606735265885512, 4.39103178831439506798597622572, 5.69008575347177264158215849218, 6.02489169493280744427615631852, 6.59977515281625863186987996291, 6.73167191810326642606979893971, 7.49158388172521085927568310919, 7.82508521488061386966684652062, 8.604158444337866192502816749637, 8.945264403197844514153305746816, 9.007976491055808414617689994244, 9.144174632756916275628198108521, 10.09245799164554459136708975461, 10.43669562557646710216880811053