L(s) = 1 | − 2·2-s + 2·4-s − 4·7-s − 9-s + 8·14-s − 4·16-s + 12·17-s + 2·18-s + 8·23-s − 8·28-s + 20·31-s + 8·32-s − 24·34-s − 2·36-s + 20·41-s − 16·46-s + 8·47-s − 2·49-s − 40·62-s + 4·63-s − 8·64-s + 24·68-s − 8·71-s − 20·73-s − 28·79-s + 81-s − 40·82-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 4-s − 1.51·7-s − 1/3·9-s + 2.13·14-s − 16-s + 2.91·17-s + 0.471·18-s + 1.66·23-s − 1.51·28-s + 3.59·31-s + 1.41·32-s − 4.11·34-s − 1/3·36-s + 3.12·41-s − 2.35·46-s + 1.16·47-s − 2/7·49-s − 5.08·62-s + 0.503·63-s − 64-s + 2.91·68-s − 0.949·71-s − 2.34·73-s − 3.15·79-s + 1/9·81-s − 4.41·82-s + ⋯ |
Λ(s)=(=(360000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(360000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
360000
= 26⋅32⋅54
|
Sign: |
1
|
Analytic conductor: |
22.9539 |
Root analytic conductor: |
2.18884 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 360000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.8627505691 |
L(21) |
≈ |
0.8627505691 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+pT+pT2 |
| 3 | C2 | 1+T2 |
| 5 | | 1 |
good | 7 | C2 | (1+2T+pT2)2 |
| 11 | C22 | 1−6T2+p2T4 |
| 13 | C2 | (1−pT2)2 |
| 17 | C2 | (1−6T+pT2)2 |
| 19 | C22 | 1−22T2+p2T4 |
| 23 | C2 | (1−4T+pT2)2 |
| 29 | C22 | 1−22T2+p2T4 |
| 31 | C2 | (1−10T+pT2)2 |
| 37 | C22 | 1−58T2+p2T4 |
| 41 | C2 | (1−10T+pT2)2 |
| 43 | C22 | 1−70T2+p2T4 |
| 47 | C2 | (1−4T+pT2)2 |
| 53 | C22 | 1−6T2+p2T4 |
| 59 | C22 | 1−54T2+p2T4 |
| 61 | C22 | 1−58T2+p2T4 |
| 67 | C22 | 1+10T2+p2T4 |
| 71 | C2 | (1+4T+pT2)2 |
| 73 | C2 | (1+10T+pT2)2 |
| 79 | C2 | (1+14T+pT2)2 |
| 83 | C2 | (1−pT2)2 |
| 89 | C2 | (1−14T+pT2)2 |
| 97 | C2 | (1−10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.46982852197989060389221127174, −10.34519256248327191045397691680, −9.861859387777574106379461685309, −9.760757295120013946296302677340, −9.026677707446116323796825846477, −8.970076493502703952046791255288, −8.263917831551586856894272402927, −7.83727342278446855732740151019, −7.41860431444945416935591347114, −7.15133876144596789457034576020, −6.36429654460564020163414918027, −6.05334046248431055581744507227, −5.69250384819205677507488475638, −4.78342985241194947751533208569, −4.38171239632414891983878406977, −3.41369744806173821743501061303, −2.91095070327648527113839263551, −2.66475744322071252239201683237, −1.15080276500926866166428846606, −0.824933504831208538900601064344,
0.824933504831208538900601064344, 1.15080276500926866166428846606, 2.66475744322071252239201683237, 2.91095070327648527113839263551, 3.41369744806173821743501061303, 4.38171239632414891983878406977, 4.78342985241194947751533208569, 5.69250384819205677507488475638, 6.05334046248431055581744507227, 6.36429654460564020163414918027, 7.15133876144596789457034576020, 7.41860431444945416935591347114, 7.83727342278446855732740151019, 8.263917831551586856894272402927, 8.970076493502703952046791255288, 9.026677707446116323796825846477, 9.760757295120013946296302677340, 9.861859387777574106379461685309, 10.34519256248327191045397691680, 10.46982852197989060389221127174