L(s) = 1 | + 27·3-s − 100·5-s − 2.77e3·11-s − 6.58e3·13-s − 2.70e3·15-s − 5.90e3·17-s − 6.64e3·19-s − 1.98e3·23-s + 7.81e4·25-s − 1.96e4·27-s − 4.16e5·29-s + 1.17e5·31-s − 7.48e4·33-s + 3.35e5·37-s − 1.77e5·39-s − 5.30e5·41-s − 1.86e5·43-s + 6.57e5·47-s − 1.59e5·51-s + 6.08e5·53-s + 2.77e5·55-s − 1.79e5·57-s + 5.36e5·59-s + 1.79e6·61-s + 6.58e5·65-s − 2.12e6·67-s − 5.35e4·69-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.357·5-s − 0.628·11-s − 0.831·13-s − 0.206·15-s − 0.291·17-s − 0.222·19-s − 0.0339·23-s + 25-s − 0.192·27-s − 3.16·29-s + 0.710·31-s − 0.362·33-s + 1.08·37-s − 0.480·39-s − 1.20·41-s − 0.357·43-s + 0.923·47-s − 0.168·51-s + 0.561·53-s + 0.224·55-s − 0.128·57-s + 0.339·59-s + 1.01·61-s + 0.297·65-s − 0.862·67-s − 0.0196·69-s + ⋯ |
Λ(s)=(=(345744s/2ΓC(s)2L(s)Λ(8−s)
Λ(s)=(=(345744s/2ΓC(s+7/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
345744
= 24⋅32⋅74
|
Sign: |
1
|
Analytic conductor: |
33739.2 |
Root analytic conductor: |
13.5529 |
Motivic weight: |
7 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 345744, ( :7/2,7/2), 1)
|
Particular Values
L(4) |
≈ |
2.804682592 |
L(21) |
≈ |
2.804682592 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1−p3T+p6T2 |
| 7 | | 1 |
good | 5 | C22 | 1+4p2T−109p4T2+4p9T3+p14T4 |
| 11 | C22 | 1+2774T−11792095T2+2774p7T3+p14T4 |
| 13 | C2 | (1+3294T+p7T2)2 |
| 17 | C22 | 1+5900T−375528673T2+5900p7T3+p14T4 |
| 19 | C22 | 1+6644T−849729003T2+6644p7T3+p14T4 |
| 23 | C22 | 1+1982T−3400897123T2+1982p7T3+p14T4 |
| 29 | C2 | (1+208106T+p7T2)2 |
| 31 | C22 | 1−117792T−13637658847T2−117792p7T3+p14T4 |
| 37 | C22 | 1−335686T+17753213463T2−335686p7T3+p14T4 |
| 41 | C2 | (1+265488T+p7T2)2 |
| 43 | C2 | (1+93292T+p7T2)2 |
| 47 | C22 | 1−657516T−74295830207T2−657516p7T3+p14T4 |
| 53 | C22 | 1−608718T−804173536313T2−608718p7T3+p14T4 |
| 59 | C22 | 1−536120T−2201226830419T2−536120p7T3+p14T4 |
| 61 | C22 | 1−1797090T+86789632079T2−1797090p7T3+p14T4 |
| 67 | C22 | 1+2123176T−1552835278347T2+2123176p7T3+p14T4 |
| 71 | C2 | (1+1191214T+p7T2)2 |
| 73 | C22 | 1+1056430T−9931354174197T2+1056430p7T3+p14T4 |
| 79 | C22 | 1+998484T−18206938687903T2+998484p7T3+p14T4 |
| 83 | C2 | (1−3898004T+p7T2)2 |
| 89 | C22 | 1−4622352T−22865196883625T2−4622352p7T3+p14T4 |
| 97 | C2 | (1−15287710T+p7T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.526310789008828306810841051286, −9.495818987264873884522411299940, −8.785263276893203329811772806620, −8.616739772922722157718291234629, −7.81551376058665930169679895286, −7.79158005181949934800826407394, −7.05102207197775877800884172710, −7.02072238307116102495631711165, −6.06285218555691671597483061057, −5.80497468872726357241131205572, −4.96147929170139513697898724779, −4.95749975630065742813192181952, −4.02602473199963266099005443967, −3.82208079131516615931526356892, −3.02111947435136813503268888911, −2.75950054500881910774087486123, −1.92356497833029215926701013168, −1.85958056382846429834314100631, −0.67074930057982823709831660355, −0.41759672478793209281249335355,
0.41759672478793209281249335355, 0.67074930057982823709831660355, 1.85958056382846429834314100631, 1.92356497833029215926701013168, 2.75950054500881910774087486123, 3.02111947435136813503268888911, 3.82208079131516615931526356892, 4.02602473199963266099005443967, 4.95749975630065742813192181952, 4.96147929170139513697898724779, 5.80497468872726357241131205572, 6.06285218555691671597483061057, 7.02072238307116102495631711165, 7.05102207197775877800884172710, 7.79158005181949934800826407394, 7.81551376058665930169679895286, 8.616739772922722157718291234629, 8.785263276893203329811772806620, 9.495818987264873884522411299940, 9.526310789008828306810841051286