Properties

Label 4-588e2-1.1-c7e2-0-7
Degree $4$
Conductor $345744$
Sign $1$
Analytic cond. $33739.2$
Root an. cond. $13.5529$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 27·3-s − 100·5-s − 2.77e3·11-s − 6.58e3·13-s − 2.70e3·15-s − 5.90e3·17-s − 6.64e3·19-s − 1.98e3·23-s + 7.81e4·25-s − 1.96e4·27-s − 4.16e5·29-s + 1.17e5·31-s − 7.48e4·33-s + 3.35e5·37-s − 1.77e5·39-s − 5.30e5·41-s − 1.86e5·43-s + 6.57e5·47-s − 1.59e5·51-s + 6.08e5·53-s + 2.77e5·55-s − 1.79e5·57-s + 5.36e5·59-s + 1.79e6·61-s + 6.58e5·65-s − 2.12e6·67-s − 5.35e4·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.357·5-s − 0.628·11-s − 0.831·13-s − 0.206·15-s − 0.291·17-s − 0.222·19-s − 0.0339·23-s + 25-s − 0.192·27-s − 3.16·29-s + 0.710·31-s − 0.362·33-s + 1.08·37-s − 0.480·39-s − 1.20·41-s − 0.357·43-s + 0.923·47-s − 0.168·51-s + 0.561·53-s + 0.224·55-s − 0.128·57-s + 0.339·59-s + 1.01·61-s + 0.297·65-s − 0.862·67-s − 0.0196·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 345744 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 345744 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(345744\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(33739.2\)
Root analytic conductor: \(13.5529\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 345744,\ (\ :7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(2.804682592\)
\(L(\frac12)\) \(\approx\) \(2.804682592\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - p^{3} T + p^{6} T^{2} \)
7 \( 1 \)
good5$C_2^2$ \( 1 + 4 p^{2} T - 109 p^{4} T^{2} + 4 p^{9} T^{3} + p^{14} T^{4} \)
11$C_2^2$ \( 1 + 2774 T - 11792095 T^{2} + 2774 p^{7} T^{3} + p^{14} T^{4} \)
13$C_2$ \( ( 1 + 3294 T + p^{7} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 5900 T - 375528673 T^{2} + 5900 p^{7} T^{3} + p^{14} T^{4} \)
19$C_2^2$ \( 1 + 6644 T - 849729003 T^{2} + 6644 p^{7} T^{3} + p^{14} T^{4} \)
23$C_2^2$ \( 1 + 1982 T - 3400897123 T^{2} + 1982 p^{7} T^{3} + p^{14} T^{4} \)
29$C_2$ \( ( 1 + 208106 T + p^{7} T^{2} )^{2} \)
31$C_2^2$ \( 1 - 117792 T - 13637658847 T^{2} - 117792 p^{7} T^{3} + p^{14} T^{4} \)
37$C_2^2$ \( 1 - 335686 T + 17753213463 T^{2} - 335686 p^{7} T^{3} + p^{14} T^{4} \)
41$C_2$ \( ( 1 + 265488 T + p^{7} T^{2} )^{2} \)
43$C_2$ \( ( 1 + 93292 T + p^{7} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 657516 T - 74295830207 T^{2} - 657516 p^{7} T^{3} + p^{14} T^{4} \)
53$C_2^2$ \( 1 - 608718 T - 804173536313 T^{2} - 608718 p^{7} T^{3} + p^{14} T^{4} \)
59$C_2^2$ \( 1 - 536120 T - 2201226830419 T^{2} - 536120 p^{7} T^{3} + p^{14} T^{4} \)
61$C_2^2$ \( 1 - 1797090 T + 86789632079 T^{2} - 1797090 p^{7} T^{3} + p^{14} T^{4} \)
67$C_2^2$ \( 1 + 2123176 T - 1552835278347 T^{2} + 2123176 p^{7} T^{3} + p^{14} T^{4} \)
71$C_2$ \( ( 1 + 1191214 T + p^{7} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 1056430 T - 9931354174197 T^{2} + 1056430 p^{7} T^{3} + p^{14} T^{4} \)
79$C_2^2$ \( 1 + 998484 T - 18206938687903 T^{2} + 998484 p^{7} T^{3} + p^{14} T^{4} \)
83$C_2$ \( ( 1 - 3898004 T + p^{7} T^{2} )^{2} \)
89$C_2^2$ \( 1 - 4622352 T - 22865196883625 T^{2} - 4622352 p^{7} T^{3} + p^{14} T^{4} \)
97$C_2$ \( ( 1 - 15287710 T + p^{7} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.526310789008828306810841051286, −9.495818987264873884522411299940, −8.785263276893203329811772806620, −8.616739772922722157718291234629, −7.81551376058665930169679895286, −7.79158005181949934800826407394, −7.05102207197775877800884172710, −7.02072238307116102495631711165, −6.06285218555691671597483061057, −5.80497468872726357241131205572, −4.96147929170139513697898724779, −4.95749975630065742813192181952, −4.02602473199963266099005443967, −3.82208079131516615931526356892, −3.02111947435136813503268888911, −2.75950054500881910774087486123, −1.92356497833029215926701013168, −1.85958056382846429834314100631, −0.67074930057982823709831660355, −0.41759672478793209281249335355, 0.41759672478793209281249335355, 0.67074930057982823709831660355, 1.85958056382846429834314100631, 1.92356497833029215926701013168, 2.75950054500881910774087486123, 3.02111947435136813503268888911, 3.82208079131516615931526356892, 4.02602473199963266099005443967, 4.95749975630065742813192181952, 4.96147929170139513697898724779, 5.80497468872726357241131205572, 6.06285218555691671597483061057, 7.02072238307116102495631711165, 7.05102207197775877800884172710, 7.79158005181949934800826407394, 7.81551376058665930169679895286, 8.616739772922722157718291234629, 8.785263276893203329811772806620, 9.495818987264873884522411299940, 9.526310789008828306810841051286

Graph of the $Z$-function along the critical line