Properties

Label 4-588e2-1.1-c7e2-0-7
Degree 44
Conductor 345744345744
Sign 11
Analytic cond. 33739.233739.2
Root an. cond. 13.552913.5529
Motivic weight 77
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 27·3-s − 100·5-s − 2.77e3·11-s − 6.58e3·13-s − 2.70e3·15-s − 5.90e3·17-s − 6.64e3·19-s − 1.98e3·23-s + 7.81e4·25-s − 1.96e4·27-s − 4.16e5·29-s + 1.17e5·31-s − 7.48e4·33-s + 3.35e5·37-s − 1.77e5·39-s − 5.30e5·41-s − 1.86e5·43-s + 6.57e5·47-s − 1.59e5·51-s + 6.08e5·53-s + 2.77e5·55-s − 1.79e5·57-s + 5.36e5·59-s + 1.79e6·61-s + 6.58e5·65-s − 2.12e6·67-s − 5.35e4·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.357·5-s − 0.628·11-s − 0.831·13-s − 0.206·15-s − 0.291·17-s − 0.222·19-s − 0.0339·23-s + 25-s − 0.192·27-s − 3.16·29-s + 0.710·31-s − 0.362·33-s + 1.08·37-s − 0.480·39-s − 1.20·41-s − 0.357·43-s + 0.923·47-s − 0.168·51-s + 0.561·53-s + 0.224·55-s − 0.128·57-s + 0.339·59-s + 1.01·61-s + 0.297·65-s − 0.862·67-s − 0.0196·69-s + ⋯

Functional equation

Λ(s)=(345744s/2ΓC(s)2L(s)=(Λ(8s)\begin{aligned}\Lambda(s)=\mathstrut & 345744 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}
Λ(s)=(345744s/2ΓC(s+7/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 345744 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 345744345744    =    2432742^{4} \cdot 3^{2} \cdot 7^{4}
Sign: 11
Analytic conductor: 33739.233739.2
Root analytic conductor: 13.552913.5529
Motivic weight: 77
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 345744, ( :7/2,7/2), 1)(4,\ 345744,\ (\ :7/2, 7/2),\ 1)

Particular Values

L(4)L(4) \approx 2.8046825922.804682592
L(12)L(\frac12) \approx 2.8046825922.804682592
L(92)L(\frac{9}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
3C2C_2 1p3T+p6T2 1 - p^{3} T + p^{6} T^{2}
7 1 1
good5C22C_2^2 1+4p2T109p4T2+4p9T3+p14T4 1 + 4 p^{2} T - 109 p^{4} T^{2} + 4 p^{9} T^{3} + p^{14} T^{4}
11C22C_2^2 1+2774T11792095T2+2774p7T3+p14T4 1 + 2774 T - 11792095 T^{2} + 2774 p^{7} T^{3} + p^{14} T^{4}
13C2C_2 (1+3294T+p7T2)2 ( 1 + 3294 T + p^{7} T^{2} )^{2}
17C22C_2^2 1+5900T375528673T2+5900p7T3+p14T4 1 + 5900 T - 375528673 T^{2} + 5900 p^{7} T^{3} + p^{14} T^{4}
19C22C_2^2 1+6644T849729003T2+6644p7T3+p14T4 1 + 6644 T - 849729003 T^{2} + 6644 p^{7} T^{3} + p^{14} T^{4}
23C22C_2^2 1+1982T3400897123T2+1982p7T3+p14T4 1 + 1982 T - 3400897123 T^{2} + 1982 p^{7} T^{3} + p^{14} T^{4}
29C2C_2 (1+208106T+p7T2)2 ( 1 + 208106 T + p^{7} T^{2} )^{2}
31C22C_2^2 1117792T13637658847T2117792p7T3+p14T4 1 - 117792 T - 13637658847 T^{2} - 117792 p^{7} T^{3} + p^{14} T^{4}
37C22C_2^2 1335686T+17753213463T2335686p7T3+p14T4 1 - 335686 T + 17753213463 T^{2} - 335686 p^{7} T^{3} + p^{14} T^{4}
41C2C_2 (1+265488T+p7T2)2 ( 1 + 265488 T + p^{7} T^{2} )^{2}
43C2C_2 (1+93292T+p7T2)2 ( 1 + 93292 T + p^{7} T^{2} )^{2}
47C22C_2^2 1657516T74295830207T2657516p7T3+p14T4 1 - 657516 T - 74295830207 T^{2} - 657516 p^{7} T^{3} + p^{14} T^{4}
53C22C_2^2 1608718T804173536313T2608718p7T3+p14T4 1 - 608718 T - 804173536313 T^{2} - 608718 p^{7} T^{3} + p^{14} T^{4}
59C22C_2^2 1536120T2201226830419T2536120p7T3+p14T4 1 - 536120 T - 2201226830419 T^{2} - 536120 p^{7} T^{3} + p^{14} T^{4}
61C22C_2^2 11797090T+86789632079T21797090p7T3+p14T4 1 - 1797090 T + 86789632079 T^{2} - 1797090 p^{7} T^{3} + p^{14} T^{4}
67C22C_2^2 1+2123176T1552835278347T2+2123176p7T3+p14T4 1 + 2123176 T - 1552835278347 T^{2} + 2123176 p^{7} T^{3} + p^{14} T^{4}
71C2C_2 (1+1191214T+p7T2)2 ( 1 + 1191214 T + p^{7} T^{2} )^{2}
73C22C_2^2 1+1056430T9931354174197T2+1056430p7T3+p14T4 1 + 1056430 T - 9931354174197 T^{2} + 1056430 p^{7} T^{3} + p^{14} T^{4}
79C22C_2^2 1+998484T18206938687903T2+998484p7T3+p14T4 1 + 998484 T - 18206938687903 T^{2} + 998484 p^{7} T^{3} + p^{14} T^{4}
83C2C_2 (13898004T+p7T2)2 ( 1 - 3898004 T + p^{7} T^{2} )^{2}
89C22C_2^2 14622352T22865196883625T24622352p7T3+p14T4 1 - 4622352 T - 22865196883625 T^{2} - 4622352 p^{7} T^{3} + p^{14} T^{4}
97C2C_2 (115287710T+p7T2)2 ( 1 - 15287710 T + p^{7} T^{2} )^{2}
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.526310789008828306810841051286, −9.495818987264873884522411299940, −8.785263276893203329811772806620, −8.616739772922722157718291234629, −7.81551376058665930169679895286, −7.79158005181949934800826407394, −7.05102207197775877800884172710, −7.02072238307116102495631711165, −6.06285218555691671597483061057, −5.80497468872726357241131205572, −4.96147929170139513697898724779, −4.95749975630065742813192181952, −4.02602473199963266099005443967, −3.82208079131516615931526356892, −3.02111947435136813503268888911, −2.75950054500881910774087486123, −1.92356497833029215926701013168, −1.85958056382846429834314100631, −0.67074930057982823709831660355, −0.41759672478793209281249335355, 0.41759672478793209281249335355, 0.67074930057982823709831660355, 1.85958056382846429834314100631, 1.92356497833029215926701013168, 2.75950054500881910774087486123, 3.02111947435136813503268888911, 3.82208079131516615931526356892, 4.02602473199963266099005443967, 4.95749975630065742813192181952, 4.96147929170139513697898724779, 5.80497468872726357241131205572, 6.06285218555691671597483061057, 7.02072238307116102495631711165, 7.05102207197775877800884172710, 7.79158005181949934800826407394, 7.81551376058665930169679895286, 8.616739772922722157718291234629, 8.785263276893203329811772806620, 9.495818987264873884522411299940, 9.526310789008828306810841051286

Graph of the ZZ-function along the critical line