L(s) = 1 | + 3·2-s + 4·4-s + 3·8-s + 6·11-s − 2·13-s + 3·16-s + 6·17-s + 6·19-s + 18·22-s + 12·23-s − 5·25-s − 6·26-s + 10·31-s + 6·32-s + 18·34-s − 4·37-s + 18·38-s − 16·43-s + 24·44-s + 36·46-s + 6·47-s − 15·50-s − 8·52-s + 6·53-s − 6·59-s + 6·61-s + 30·62-s + ⋯ |
L(s) = 1 | + 2.12·2-s + 2·4-s + 1.06·8-s + 1.80·11-s − 0.554·13-s + 3/4·16-s + 1.45·17-s + 1.37·19-s + 3.83·22-s + 2.50·23-s − 25-s − 1.17·26-s + 1.79·31-s + 1.06·32-s + 3.08·34-s − 0.657·37-s + 2.91·38-s − 2.43·43-s + 3.61·44-s + 5.30·46-s + 0.875·47-s − 2.12·50-s − 1.10·52-s + 0.824·53-s − 0.781·59-s + 0.768·61-s + 3.81·62-s + ⋯ |
Λ(s)=(=(32867289s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(32867289s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
32867289
= 34⋅74⋅132
|
Sign: |
1
|
Analytic conductor: |
2095.64 |
Root analytic conductor: |
6.76596 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 32867289, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
15.84815447 |
L(21) |
≈ |
15.84815447 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 7 | | 1 |
| 13 | C1 | (1+T)2 |
good | 2 | C22 | 1−3T+5T2−3pT3+p2T4 |
| 5 | C22 | 1+pT2+p2T4 |
| 11 | C2 | (1−3T+pT2)2 |
| 17 | D4 | 1−6T+23T2−6pT3+p2T4 |
| 19 | C2 | (1−3T+pT2)2 |
| 23 | D4 | 1−12T+77T2−12pT3+p2T4 |
| 29 | C22 | 1+38T2+p2T4 |
| 31 | C2 | (1−5T+pT2)2 |
| 37 | D4 | 1+4T+33T2+4pT3+p2T4 |
| 41 | C22 | 1+62T2+p2T4 |
| 43 | C2 | (1+8T+pT2)2 |
| 47 | D4 | 1−6T+83T2−6pT3+p2T4 |
| 53 | D4 | 1−6T+95T2−6pT3+p2T4 |
| 59 | D4 | 1+6T+107T2+6pT3+p2T4 |
| 61 | C2 | (1−3T+pT2)2 |
| 67 | C2 | (1+3T+pT2)2 |
| 71 | C22 | 1+62T2+p2T4 |
| 73 | D4 | 1−8T+117T2−8pT3+p2T4 |
| 79 | D4 | 1−8T+129T2−8pT3+p2T4 |
| 83 | C2 | (1+pT2)2 |
| 89 | C22 | 1+173T2+p2T4 |
| 97 | D4 | 1+8T+30T2+8pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.270612109086063232287708959359, −7.69629757132774707611651376452, −7.39496068555586426443115287178, −7.17955611398549923853908406109, −6.62305805131218474681205173489, −6.52839518284144799122193282594, −5.86322008664896671218046157369, −5.81398570354841287006827766299, −5.17501842036711965255703147720, −5.04922240682503243801843755772, −4.69777243122186607431825797567, −4.40802129489538029928248668667, −3.79572697239028377233237807751, −3.50998178364644846807811630612, −3.16810263603139382652102846667, −3.11108144127331549652676534880, −2.31518502414556948623382678579, −1.70417661669501108230058458565, −1.05093587368298752338815604664, −0.883430952743246814743964384621,
0.883430952743246814743964384621, 1.05093587368298752338815604664, 1.70417661669501108230058458565, 2.31518502414556948623382678579, 3.11108144127331549652676534880, 3.16810263603139382652102846667, 3.50998178364644846807811630612, 3.79572697239028377233237807751, 4.40802129489538029928248668667, 4.69777243122186607431825797567, 5.04922240682503243801843755772, 5.17501842036711965255703147720, 5.81398570354841287006827766299, 5.86322008664896671218046157369, 6.52839518284144799122193282594, 6.62305805131218474681205173489, 7.17955611398549923853908406109, 7.39496068555586426443115287178, 7.69629757132774707611651376452, 8.270612109086063232287708959359