L(s) = 1 | + 2·3-s + 6·7-s − 9-s − 2·11-s − 6·17-s + 6·19-s + 12·21-s + 6·23-s − 2·25-s − 6·27-s + 6·29-s − 4·33-s − 2·37-s + 6·41-s + 6·43-s + 12·47-s + 15·49-s − 12·51-s + 12·57-s + 6·59-s + 14·61-s − 6·63-s + 18·67-s + 12·69-s − 6·71-s − 8·73-s − 4·75-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 2.26·7-s − 1/3·9-s − 0.603·11-s − 1.45·17-s + 1.37·19-s + 2.61·21-s + 1.25·23-s − 2/5·25-s − 1.15·27-s + 1.11·29-s − 0.696·33-s − 0.328·37-s + 0.937·41-s + 0.914·43-s + 1.75·47-s + 15/7·49-s − 1.68·51-s + 1.58·57-s + 0.781·59-s + 1.79·61-s − 0.755·63-s + 2.19·67-s + 1.44·69-s − 0.712·71-s − 0.936·73-s − 0.461·75-s + ⋯ |
Λ(s)=(=(29246464s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(29246464s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
29246464
= 210⋅134
|
Sign: |
1
|
Analytic conductor: |
1864.77 |
Root analytic conductor: |
6.57138 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 29246464, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
7.227589939 |
L(21) |
≈ |
7.227589939 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | | 1 |
good | 3 | D4 | 1−2T+5T2−2pT3+p2T4 |
| 5 | C22 | 1+2T2+p2T4 |
| 7 | D4 | 1−6T+3pT2−6pT3+p2T4 |
| 11 | D4 | 1+2T+5T2+2pT3+p2T4 |
| 17 | D4 | 1+6T+35T2+6pT3+p2T4 |
| 19 | D4 | 1−6T+29T2−6pT3+p2T4 |
| 23 | D4 | 1−6T+37T2−6pT3+p2T4 |
| 29 | D4 | 1−6T+35T2−6pT3+p2T4 |
| 31 | C22 | 1+30T2+p2T4 |
| 37 | D4 | 1+2T+3T2+2pT3+p2T4 |
| 41 | D4 | 1−6T+83T2−6pT3+p2T4 |
| 43 | D4 | 1−6T+45T2−6pT3+p2T4 |
| 47 | C2 | (1−6T+pT2)2 |
| 53 | C22 | 1+98T2+p2T4 |
| 59 | D4 | 1−6T+109T2−6pT3+p2T4 |
| 61 | C2 | (1−7T+pT2)2 |
| 67 | D4 | 1−18T+197T2−18pT3+p2T4 |
| 71 | D4 | 1+6T+133T2+6pT3+p2T4 |
| 73 | D4 | 1+8T+90T2+8pT3+p2T4 |
| 79 | C2 | (1−6T+pT2)2 |
| 83 | C2 | (1−4T+pT2)2 |
| 89 | D4 | 1−18T+227T2−18pT3+p2T4 |
| 97 | C2 | (1−9T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.163002021581106903165300470532, −8.114993285590380313870147274227, −7.80260847911718824346767896848, −7.48768716252550825910324545140, −7.02670816124336143730025666275, −6.74815102104003767634057697284, −6.21158818162114220661713603136, −5.60232411800284578314719073859, −5.41867426713687951873961939835, −4.99160731173212377682020100826, −4.80414533850404788822905637947, −4.31453885098004132106142828463, −3.87484245944889210098693645298, −3.49568209900732479762338730748, −2.76205241891822037752605317653, −2.68208283939971958074764602206, −2.05182273091076588194428043791, −2.00228685098563934553756299625, −0.968780946651762960778269978958, −0.789429202330035618389570570369,
0.789429202330035618389570570369, 0.968780946651762960778269978958, 2.00228685098563934553756299625, 2.05182273091076588194428043791, 2.68208283939971958074764602206, 2.76205241891822037752605317653, 3.49568209900732479762338730748, 3.87484245944889210098693645298, 4.31453885098004132106142828463, 4.80414533850404788822905637947, 4.99160731173212377682020100826, 5.41867426713687951873961939835, 5.60232411800284578314719073859, 6.21158818162114220661713603136, 6.74815102104003767634057697284, 7.02670816124336143730025666275, 7.48768716252550825910324545140, 7.80260847911718824346767896848, 8.114993285590380313870147274227, 8.163002021581106903165300470532