L(s) = 1 | + 2·5-s − 2·9-s + 2·13-s + 4·17-s + 3·25-s − 12·29-s − 12·37-s + 4·41-s − 4·45-s − 14·49-s − 4·53-s − 28·61-s + 4·65-s − 4·73-s − 5·81-s + 8·85-s − 12·89-s + 4·97-s − 20·101-s − 20·109-s + 4·113-s − 4·117-s − 18·121-s + 4·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 2/3·9-s + 0.554·13-s + 0.970·17-s + 3/5·25-s − 2.22·29-s − 1.97·37-s + 0.624·41-s − 0.596·45-s − 2·49-s − 0.549·53-s − 3.58·61-s + 0.496·65-s − 0.468·73-s − 5/9·81-s + 0.867·85-s − 1.27·89-s + 0.406·97-s − 1.99·101-s − 1.91·109-s + 0.376·113-s − 0.369·117-s − 1.63·121-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
Λ(s)=(=(540800s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(540800s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
540800
= 27⋅52⋅132
|
Sign: |
−1
|
Analytic conductor: |
34.4818 |
Root analytic conductor: |
2.42324 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 540800, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1 | (1−T)2 |
| 13 | C1 | (1−T)2 |
good | 3 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 7 | C2 | (1+pT2)2 |
| 11 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−2T+pT2)2 |
| 19 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 23 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 29 | C2 | (1+6T+pT2)2 |
| 31 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 37 | C2 | (1+6T+pT2)2 |
| 41 | C2 | (1−2T+pT2)2 |
| 43 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 47 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 53 | C2 | (1+2T+pT2)2 |
| 59 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 61 | C2 | (1+14T+pT2)2 |
| 67 | C2 | (1+pT2)2 |
| 71 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 73 | C2 | (1+2T+pT2)2 |
| 79 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 83 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C2 | (1−2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.282388148593036711889740506020, −7.76074024039613588419363915341, −7.44095337164983387150060505996, −6.79685282000922095191914374444, −6.33588991532526860429499225622, −5.89482538800335589915814344399, −5.43018572527764567927669449080, −5.24172374409154567149889570954, −4.42926641381854419615826380073, −3.83609522350488929158971696987, −3.10020205606080864107700760801, −2.93871105322865322021254198939, −1.66550824653592893392121562696, −1.63546887865200897104772810976, 0,
1.63546887865200897104772810976, 1.66550824653592893392121562696, 2.93871105322865322021254198939, 3.10020205606080864107700760801, 3.83609522350488929158971696987, 4.42926641381854419615826380073, 5.24172374409154567149889570954, 5.43018572527764567927669449080, 5.89482538800335589915814344399, 6.33588991532526860429499225622, 6.79685282000922095191914374444, 7.44095337164983387150060505996, 7.76074024039613588419363915341, 8.282388148593036711889740506020