Properties

Label 4-540800-1.1-c1e2-0-75
Degree $4$
Conductor $540800$
Sign $-1$
Analytic cond. $34.4818$
Root an. cond. $2.42324$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·9-s + 2·13-s + 4·17-s + 3·25-s − 12·29-s − 12·37-s + 4·41-s − 4·45-s − 14·49-s − 4·53-s − 28·61-s + 4·65-s − 4·73-s − 5·81-s + 8·85-s − 12·89-s + 4·97-s − 20·101-s − 20·109-s + 4·113-s − 4·117-s − 18·121-s + 4·125-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  + 0.894·5-s − 2/3·9-s + 0.554·13-s + 0.970·17-s + 3/5·25-s − 2.22·29-s − 1.97·37-s + 0.624·41-s − 0.596·45-s − 2·49-s − 0.549·53-s − 3.58·61-s + 0.496·65-s − 0.468·73-s − 5/9·81-s + 0.867·85-s − 1.27·89-s + 0.406·97-s − 1.99·101-s − 1.91·109-s + 0.376·113-s − 0.369·117-s − 1.63·121-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 540800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(540800\)    =    \(2^{7} \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(34.4818\)
Root analytic conductor: \(2.42324\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 540800,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 - T )^{2} \)
13$C_1$ \( ( 1 - T )^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.282388148593036711889740506020, −7.76074024039613588419363915341, −7.44095337164983387150060505996, −6.79685282000922095191914374444, −6.33588991532526860429499225622, −5.89482538800335589915814344399, −5.43018572527764567927669449080, −5.24172374409154567149889570954, −4.42926641381854419615826380073, −3.83609522350488929158971696987, −3.10020205606080864107700760801, −2.93871105322865322021254198939, −1.66550824653592893392121562696, −1.63546887865200897104772810976, 0, 1.63546887865200897104772810976, 1.66550824653592893392121562696, 2.93871105322865322021254198939, 3.10020205606080864107700760801, 3.83609522350488929158971696987, 4.42926641381854419615826380073, 5.24172374409154567149889570954, 5.43018572527764567927669449080, 5.89482538800335589915814344399, 6.33588991532526860429499225622, 6.79685282000922095191914374444, 7.44095337164983387150060505996, 7.76074024039613588419363915341, 8.282388148593036711889740506020

Graph of the $Z$-function along the critical line