L(s) = 1 | − 3·2-s − 6·3-s + 4-s + 18·6-s − 14·7-s − 3·8-s + 27·9-s + 62·11-s − 6·12-s + 6·13-s + 42·14-s + 9·16-s − 40·17-s − 81·18-s − 122·19-s + 84·21-s − 186·22-s − 16·23-s + 18·24-s − 18·26-s − 108·27-s − 14·28-s + 352·29-s + 66·31-s + 165·32-s − 372·33-s + 120·34-s + ⋯ |
L(s) = 1 | − 1.06·2-s − 1.15·3-s + 1/8·4-s + 1.22·6-s − 0.755·7-s − 0.132·8-s + 9-s + 1.69·11-s − 0.144·12-s + 0.128·13-s + 0.801·14-s + 9/64·16-s − 0.570·17-s − 1.06·18-s − 1.47·19-s + 0.872·21-s − 1.80·22-s − 0.145·23-s + 0.153·24-s − 0.135·26-s − 0.769·27-s − 0.0944·28-s + 2.25·29-s + 0.382·31-s + 0.911·32-s − 1.96·33-s + 0.605·34-s + ⋯ |
Λ(s)=(=(275625s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(275625s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
275625
= 32⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
959.512 |
Root analytic conductor: |
5.56560 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 275625, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
0.8435282514 |
L(21) |
≈ |
0.8435282514 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1+pT)2 |
| 5 | | 1 |
| 7 | C1 | (1+pT)2 |
good | 2 | D4 | 1+3T+p3T2+3p3T3+p6T4 |
| 11 | D4 | 1−62T+3582T2−62p3T3+p6T4 |
| 13 | D4 | 1−6T+3378T2−6p3T3+p6T4 |
| 17 | D4 | 1+40T+8750T2+40p3T3+p6T4 |
| 19 | D4 | 1+122T+17398T2+122p3T3+p6T4 |
| 23 | D4 | 1+16T+34pT2+16p3T3+p6T4 |
| 29 | D4 | 1−352T+78278T2−352p3T3+p6T4 |
| 31 | D4 | 1−66T+45870T2−66p3T3+p6T4 |
| 37 | D4 | 1−188T+44542T2−188p3T3+p6T4 |
| 41 | D4 | 1−16T+18350T2−16p3T3+p6T4 |
| 43 | D4 | 1−396T+2226pT2−396p3T3+p6T4 |
| 47 | D4 | 1−4pT+15582T2−4p4T3+p6T4 |
| 53 | D4 | 1+982T+504354T2+982p3T3+p6T4 |
| 59 | D4 | 1−516T+418118T2−516p3T3+p6T4 |
| 61 | D4 | 1+880T+575238T2+880p3T3+p6T4 |
| 67 | D4 | 1−356T+100374T2−356p3T3+p6T4 |
| 71 | D4 | 1−310T+664038T2−310p3T3+p6T4 |
| 73 | D4 | 1+326T+789802T2+326p3T3+p6T4 |
| 79 | D4 | 1−1832T+1824478T2−1832p3T3+p6T4 |
| 83 | D4 | 1−680T+744870T2−680p3T3+p6T4 |
| 89 | D4 | 1−796T+411158T2−796p3T3+p6T4 |
| 97 | D4 | 1−670T+1145410T2−670p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.44952857988875015793601439060, −10.40099230716399718473465553066, −9.540365068206106608860730546166, −9.514644768178388124076130362418, −8.873951856178545941469969180437, −8.778035039137146358886626658437, −7.998355039869237451727281040568, −7.66450475351796549017430363913, −6.72590460896638801413599308830, −6.46481252689732640356209446685, −6.34581754091404579682857301941, −5.94609151761960009021876136681, −4.91997094614412997784028654818, −4.47848582870770620047149031389, −4.13752717693359713465153361429, −3.36926902953674733975486515684, −2.55337736460355621813102975690, −1.73711471114374038831705788498, −0.66305326649196143557993196086, −0.66253792770971114502580459844,
0.66253792770971114502580459844, 0.66305326649196143557993196086, 1.73711471114374038831705788498, 2.55337736460355621813102975690, 3.36926902953674733975486515684, 4.13752717693359713465153361429, 4.47848582870770620047149031389, 4.91997094614412997784028654818, 5.94609151761960009021876136681, 6.34581754091404579682857301941, 6.46481252689732640356209446685, 6.72590460896638801413599308830, 7.66450475351796549017430363913, 7.998355039869237451727281040568, 8.778035039137146358886626658437, 8.873951856178545941469969180437, 9.514644768178388124076130362418, 9.540365068206106608860730546166, 10.40099230716399718473465553066, 10.44952857988875015793601439060