Properties

Label 4-507e2-1.1-c1e2-0-3
Degree $4$
Conductor $257049$
Sign $1$
Analytic cond. $16.3896$
Root an. cond. $2.01206$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 4-s + 9-s − 2·12-s − 3·16-s + 6·17-s + 6·23-s − 2·25-s + 4·27-s + 36-s + 14·43-s + 6·48-s + 4·49-s − 12·51-s − 18·53-s + 4·61-s − 7·64-s + 6·68-s − 12·69-s + 4·75-s − 2·79-s − 11·81-s + 6·92-s − 2·100-s + 2·103-s − 12·107-s + 4·108-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/2·4-s + 1/3·9-s − 0.577·12-s − 3/4·16-s + 1.45·17-s + 1.25·23-s − 2/5·25-s + 0.769·27-s + 1/6·36-s + 2.13·43-s + 0.866·48-s + 4/7·49-s − 1.68·51-s − 2.47·53-s + 0.512·61-s − 7/8·64-s + 0.727·68-s − 1.44·69-s + 0.461·75-s − 0.225·79-s − 1.22·81-s + 0.625·92-s − 1/5·100-s + 0.197·103-s − 1.16·107-s + 0.384·108-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 257049 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 257049 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(257049\)    =    \(3^{2} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(16.3896\)
Root analytic conductor: \(2.01206\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 257049,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.214752811\)
\(L(\frac12)\) \(\approx\) \(1.214752811\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + 2 T + p T^{2} \)
13 \( 1 \)
good2$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - p T^{2} )^{2} \)
17$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
19$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 44 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
67$C_2^2$ \( 1 + 80 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 122 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.980886673486165546826452260552, −8.436528347276759765453416330773, −7.86681440859899557940278830497, −7.39002474056279655909055763247, −7.01073579549101950820309060680, −6.48478974329924352959280020551, −5.95303991829253836051682144012, −5.68088478474610308995663356944, −5.05490617752337781949443792469, −4.63514044980194004917391793964, −3.95291048716905267129276524078, −3.12951718765850005954972981453, −2.66425180231818102315444142038, −1.64706713671509607318053571788, −0.73426393234454509309693687056, 0.73426393234454509309693687056, 1.64706713671509607318053571788, 2.66425180231818102315444142038, 3.12951718765850005954972981453, 3.95291048716905267129276524078, 4.63514044980194004917391793964, 5.05490617752337781949443792469, 5.68088478474610308995663356944, 5.95303991829253836051682144012, 6.48478974329924352959280020551, 7.01073579549101950820309060680, 7.39002474056279655909055763247, 7.86681440859899557940278830497, 8.436528347276759765453416330773, 8.980886673486165546826452260552

Graph of the $Z$-function along the critical line