Properties

Label 4-504e2-1.1-c0e2-0-2
Degree $4$
Conductor $254016$
Sign $1$
Analytic cond. $0.0632667$
Root an. cond. $0.501526$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 5-s − 2·6-s − 7-s + 8-s + 3·9-s − 10-s − 2·13-s + 14-s + 2·15-s − 16-s − 3·18-s − 2·19-s − 2·21-s + 23-s + 2·24-s + 25-s + 2·26-s + 4·27-s − 2·30-s − 35-s + 2·38-s − 4·39-s + 40-s + 2·42-s + 3·45-s + ⋯
L(s)  = 1  − 2-s + 2·3-s + 5-s − 2·6-s − 7-s + 8-s + 3·9-s − 10-s − 2·13-s + 14-s + 2·15-s − 16-s − 3·18-s − 2·19-s − 2·21-s + 23-s + 2·24-s + 25-s + 2·26-s + 4·27-s − 2·30-s − 35-s + 2·38-s − 4·39-s + 40-s + 2·42-s + 3·45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 254016 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 254016 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(254016\)    =    \(2^{6} \cdot 3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(0.0632667\)
Root analytic conductor: \(0.501526\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 254016,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8428147775\)
\(L(\frac12)\) \(\approx\) \(0.8428147775\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + T^{2} \)
3$C_1$ \( ( 1 - T )^{2} \)
7$C_2$ \( 1 + T + T^{2} \)
good5$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
13$C_2$ \( ( 1 + T + T^{2} )^{2} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
19$C_2$ \( ( 1 + T + T^{2} )^{2} \)
23$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2$ \( ( 1 + T + T^{2} )^{2} \)
61$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_2$ \( ( 1 + T + T^{2} )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
83$C_2$ \( ( 1 + T + T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.85615308179037527096033707483, −10.63730981310339958248220375650, −10.05336237641633738941287371096, −9.913468260948056977983502797938, −9.548843887652243704977109060494, −9.135801004569564371320108454935, −8.734186844481811898744008869376, −8.569730251692255414767893088893, −7.78741213173594247147192461213, −7.50429823732128498679165418175, −6.90648135148348130200714294975, −6.73256908674013255759844335816, −6.00478283645380134632712850492, −4.97231901674417063433174229573, −4.64030483812028349803504844570, −4.12076537595443995934849092890, −3.24584509188937312741968202860, −2.67046259978795969709661450435, −2.24204347859469371287362129720, −1.55295682418007375271480264696, 1.55295682418007375271480264696, 2.24204347859469371287362129720, 2.67046259978795969709661450435, 3.24584509188937312741968202860, 4.12076537595443995934849092890, 4.64030483812028349803504844570, 4.97231901674417063433174229573, 6.00478283645380134632712850492, 6.73256908674013255759844335816, 6.90648135148348130200714294975, 7.50429823732128498679165418175, 7.78741213173594247147192461213, 8.569730251692255414767893088893, 8.734186844481811898744008869376, 9.135801004569564371320108454935, 9.548843887652243704977109060494, 9.913468260948056977983502797938, 10.05336237641633738941287371096, 10.63730981310339958248220375650, 10.85615308179037527096033707483

Graph of the $Z$-function along the critical line