Properties

Label 4-490e2-1.1-c3e2-0-23
Degree $4$
Conductor $240100$
Sign $1$
Analytic cond. $835.842$
Root an. cond. $5.37688$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 2·3-s + 12·4-s − 10·5-s − 8·6-s − 32·8-s − 5·9-s + 40·10-s − 68·11-s + 24·12-s + 52·13-s − 20·15-s + 80·16-s − 164·17-s + 20·18-s + 232·19-s − 120·20-s + 272·22-s − 198·23-s − 64·24-s + 75·25-s − 208·26-s + 26·27-s − 18·29-s + 80·30-s − 196·31-s − 192·32-s + ⋯
L(s)  = 1  − 1.41·2-s + 0.384·3-s + 3/2·4-s − 0.894·5-s − 0.544·6-s − 1.41·8-s − 0.185·9-s + 1.26·10-s − 1.86·11-s + 0.577·12-s + 1.10·13-s − 0.344·15-s + 5/4·16-s − 2.33·17-s + 0.261·18-s + 2.80·19-s − 1.34·20-s + 2.63·22-s − 1.79·23-s − 0.544·24-s + 3/5·25-s − 1.56·26-s + 0.185·27-s − 0.115·29-s + 0.486·30-s − 1.13·31-s − 1.06·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 240100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240100 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(240100\)    =    \(2^{2} \cdot 5^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(835.842\)
Root analytic conductor: \(5.37688\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 240100,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + p T )^{2} \)
5$C_1$ \( ( 1 + p T )^{2} \)
7 \( 1 \)
good3$D_{4}$ \( 1 - 2 T + p^{2} T^{2} - 2 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 + 68 T + 3634 T^{2} + 68 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 4 p T + 4334 T^{2} - 4 p^{4} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 164 T + 13606 T^{2} + 164 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 232 T + 26438 T^{2} - 232 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 198 T + 23785 T^{2} + 198 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 18 T + 33955 T^{2} + 18 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 196 T + 27786 T^{2} + 196 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 160 T + 101082 T^{2} - 160 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 62 T + 72379 T^{2} + 62 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 - 198 T + 140065 T^{2} - 198 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 164 T + 211426 T^{2} + 164 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 40 T + 5570 p T^{2} - 40 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 80 T - 85178 T^{2} - 80 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 174 T + 105307 T^{2} - 174 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 1054 T + 672761 T^{2} + 1054 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 832 T + 815278 T^{2} + 832 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 820 T + 840150 T^{2} + 820 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 576 T + 880606 T^{2} + 576 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 298 T + 423841 T^{2} - 298 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 182 T + 1152523 T^{2} - 182 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 892 T + 1918278 T^{2} + 892 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.34776788013057545236386032035, −9.834004188612689274553040635034, −9.257107474720428561982165086115, −9.045259724049241437119985722194, −8.386456487273605606709753321467, −8.218072605488178108090091433399, −7.61973981069178400487584782718, −7.47298215952957045797716804917, −6.94995312692386906741403684678, −6.26890458702139957394183513160, −5.67672375789941247705982286114, −5.30683031437977801905639643482, −4.39236955133977824638796963731, −3.89902629033933013211748808005, −2.96210175062548845152882749686, −2.83608812274789522453266314827, −1.94779501270488225540316155032, −1.18544078469758491623642159273, 0, 0, 1.18544078469758491623642159273, 1.94779501270488225540316155032, 2.83608812274789522453266314827, 2.96210175062548845152882749686, 3.89902629033933013211748808005, 4.39236955133977824638796963731, 5.30683031437977801905639643482, 5.67672375789941247705982286114, 6.26890458702139957394183513160, 6.94995312692386906741403684678, 7.47298215952957045797716804917, 7.61973981069178400487584782718, 8.218072605488178108090091433399, 8.386456487273605606709753321467, 9.045259724049241437119985722194, 9.257107474720428561982165086115, 9.834004188612689274553040635034, 10.34776788013057545236386032035

Graph of the $Z$-function along the critical line